LPL - Laboratoire de Physique des Lasers

Magnetic quantum gases (GQM)

> Magnetic quantum gases - Chromium

 

Magnetic quantum gases - Strontium

Pierre Bataille (PhD), Andrea Litvinov (PhD), Olivier Gorceix, Bruno Laburthe-Tolra, Martin Robert-de-Saint-Vincent


Former members: Etienne Maréchal, Isam Manai


Main collaborators:
John Huckans, Bloomsburg University, Etats-Unis d’Amérique
Marc Cheneau, Laboratoire Charles Fabry, Palaiseau, France
Rodolphe Le Targat et Jérôme Lodewyck, LNE-SYRTE, Paris, France
Tommaso Roscilde, Laboratoire de Physique de l’Ecole Normale Supérieure de Lyon, France

 

Large spin quantum gases with narrow line control

Quantum magnetism in ensembles of large spin atoms present possibilities beyond those offered by spin ½ electron gases and effective spin ½ atoms. For example, magnetic phases, with topological properties applicable to quantum information manipulation may be accessed, or new mechanisms for the emergence of superfluidity evidenced. Parallels to magnetic frustration can be drawn. To apprehend this, our experiment produces ultracold degenerate quantum gases fermionic strontium 87, with large spin F = 9/2, disposed in periodic potentials induced by lasers (optical lattices). In addition to its high spin, Strontium 87 presents original interaction properties : contrary to most species (e.g., chromium), the interactions between two particles do not depend on their spin projections. Only the Pauli principle, that prevents direct interactions between two identical fermions, indirectly produces effective magnetic interactions. We aim at studying how entanglement and magnetic order depend on the SU(N) symmetry associated to these spin-independent collision properties, where N will be adjusted by controlling the number of populated spin states. We will then explore from the familiar SU(N=2) case analogous to electrons in crystalline materials to the unexplored regime 5≤N≤10.

 

Our approach is to bridge many-body physics and precision measurements, by implementing novels protocols relying on the strong energy selectivity enabled by the narrow lines of strontium – which are of so precious to metrology. On the one hand side, we are developing a super-resolution scheme; akin to a tomography, to measure the spin of each atom in each lattice site. On the other hand side, the spin-orbit coupling induced by lasers close to the intercombination line of strontium enables interesting coherent manipulations of the spin. We will exploit this to prepare low energy spin textures and study their out-of-equilibrium dynamics.

 

spin and momentum resolved picture  of a five-component degenerate Sr gas, on our experiment

Figure: spin and momentum resolved picture of a five-component degenerate Sr gas, on our experiment.

 

More information on the team’s website: > http://www-lpl.univ-paris13.fr/gqm/


Internships, PhDs, post-doc offers on the website!


Contacts

Martin Robert-de-Saint-Vincent ou Bruno Laburthe-Tolra

 

Fundings

CNRS, UP13, DIM Nano’K – IFRAF, DIM SIRTEQANR, Labex FIRST-TF

 

Réferences

  1. Adiabatic spin-dependent momentum transfer in an SU(N) degenerate Fermi gas,
    P. Bataille, A. Litvinov, I. Manai, J. Huckans, F. Wiotte, A. Kaladjian, O. Gorceix, E. Maréchal, B. Laburthe-Tolra, M. Robert-de-Saint-Vincent,
    Phys. Rev. A 102, 013317 (2020)

  2. Shelving spectroscopy of the strontium intercombination line,
    I. Manai, A. Molineri, C. Fréjaville, C. Duval, P. Bataille, R. Journet, F. Wiotte, B. Laburthe-Tolra, E. Maréchal, M. Cheneau, M. Robert-de-Saint-Vincent,
    J. Phys. B: At. Mol. Opt. Phys. 53, 085005 (2020)

  3. Dissipative cooling of spin chains by a bath of dipolar particles,
    M. Robert-de-Saint-Vincent, P. Pedri, B. Laburthe-Tolra,
    New Journal of Physics 20, 073037 (2018)

 

© 1998 - 2021 Laboratoire de physique des lasers (LPL). Tous droits réservés.

Université Sorbonne Paris Nord (USPN) - Institut Galilée - CNRS LPL UMR7538

99, av. J.B. Clément - 93430 VILLETANEUSE - FRANCE

Logo LPL
Logo U13
Logo CNRS
Logo Institut Galilée
Logo Campus Condorcet