LPL - Laboratoire de Physique des Lasers

Metrology, Molecules and Fundamental Tests (MMT)

The group Metrology, Molecules and Fundamental Tests is performing ultra-high resolution molecular spectroscopy in the near and middle infrared and optical frequency metrology. The main experimental projects are the following:

 

Compact frequency comb

Vincent Roncin (MCF HDR), Frédéric Du-Burck (PR Emérite), Mamadou Faye (doctorant), Yacine Chelouah (Ingénieur de recherche CDD)


The aim of the Compact Frequency Combs project is to explore the potential of self-pulsing semiconductor lasers for implementing compact systems in the field of frequency metrology. Of particular interest are single-section Fabry-Perot quantum-dash or quantum-well structures which, when supplied with direct current, spontaneously emit a frequency comb resulting from passive mode-locking. The locking mechanism is based on four-wave mixing and intermodal injection processes. The comb is generated in the 1.5 µm region and extends over about ten nanometers with a repetition rate of a few tens of gigahertz. The widths of the optical modes are a few MHz, while the beat note linewidth of all modes is only a few hundred Hz, attesting to the efficiency of the locking process.


Image 1

 

The maturity and performance of these components, originally developed for optical telecommunications at 1.5 µm, make them attractive for use in transportable systems. For applications in frequency metrology (clocks, synchronization) or spectroscopy, it is necessary to transfer to them the stability of a frequency reference. The frequency ν_n of a comb mode being given by

νn0+(n-n0 ) Frep'


both degrees of freedom of the comb must be stabilized, i.e. its repetition rate Frep and the optical frequency ν0 of a mode taken as a reference. To this end, we have chosen to stabilize the reference mode by optical injection of an ultra-stable frequency reference, and the repetition frequency by electrical injection of an RF source. We are also studying an original electrical "self-injection" alternative in which the beat note at Frep is reinjected onto the comb's electrical input.


At a fundamental level, this work enables us to study the origin and coupling of fundamental and technical noises, as well as optical and electrical locking processes.


In terms of instrumentation, this work has led to the development of a frequency reference based on the detection of an acetylene transition in a cell with a stability in the 10-13 range, and a device for transferring stability to tunable sources in the C-band of optical telecommunications at the 10-15 level. Several collaborations with academic and industrial partners have been initiated, covering source development, packaging (thermal stabilization), laser stabilization devices (molecular references), frequency stability transfer (fiber ring cavities, fiber Bragg grating resonators) and integration on photonic platforms (PIC).
 

Image 2


Contacts
Vincent Roncin
Frédéric Du-Burck



Thèses
Amine Chaouche Ramdane
Développements expérimentaux pour la caractérisation et la stabilisation de sources laser auto-impulsionnelles à semi-conducteurs pour des applications en métrologie des fréquences Thèse de doctorat de l’université Paris 13 (14 décembre 2018 )


Karim Manamanni
Référence de fréquence à 1.5 µm et transfert de stabilité pour l’étude de l’injection optique d’un laser à semi-conducteur Thèse de doctorat de l’université Université Paris XIII –Sorbonne Paris Nord (17 décembre 2021)


Tatiana Steshchenko
Étude de la stabilisation des peignes de fréquences auto-impulsionnels à semi-conducteurs Thèse de doctorat de l’université Université Paris XIII –Sorbonne Paris Nord (23 janvier 2024)



Références

  1. V. Roncin, F. Du-Burck, J. Hrabina, Stability improvement of a fiber-based frequency reference at 1.5 µm by using an original detection technique for interference cancellation, CLEO/Europe-EQUEC 2023, Munich, France, 26-30 June (2023).

  2. T. Steshchenko, V. Roncin, F. Du-Burck, Étude du transfert de bruit dans les peignes de fréquence à semi-conducteurs, Journée Club Optique et Micro-ondes 2023 (JCOM 2023), Online, 19 juin 2023.

  3. T. Steshchenko, V. Roncin, F. Du-Burck, Study of noise transfer in semiconductor frequency combs, CLEO/Europe-EQUEC 2023, Munich, France, 26-30 June (2023).

  4. T. Steshchenko, K. Manamanni, H. Mouhamad, V. Roncin, F. Du-Burck, Limitations of the frequency stability transfer in the near infrared using a fiber-based ring cavity, Optics Letters, 47(21), 5465-5468 (2022).

  5. F. Du-Burck, K. Manamanni, T. Steshchenko, A. Chaouche Ramdane, V. Roncin, Effects of polarization modulation induced by electro-optic modulators in fiber-based setups, Photonic Technology Letters, 34(3), 185-188, (2022).

  6. K. Manamanni, T. Steshchenko, F. Wiotte, A. Chaouche Ramdane, M.-O. Sahni, V. Roncin, F. Du-Burck, Frequency Stability Transfer in Passive Mode-Locked Quantum-dash Laser Diode using Optical Injection Locking, IEEE Journal of Quantum Electronics 58(4), 1-9 (2022).

  7.  K. Manamanni, T. Steshchenko, F. Wiotte, R. Le Targat, M. Abgrall, O. Lopez, E. Cantin, P.-E. Pottie, A. Amy-Klein, V. Roncin, F. Du-Burck, Limitations due to residual interference in a fiber-based optical frequency reference at 1.55 µm, Journal of Optical Society of America B 39(2), 438-443 (2022).

  8. T. Steshchenko, K. Manamanni, F. Du-Burck, V. Roncin, Cavité en anneau à fibre pour le transfert de stabilité, Journées Nationales d’Optique Guidée (JNOG 2022 – Optique Nice 2022), Nice, France (5-9 juillet 2022).

  9. G. Perin, D. Mammez, A. Congar, P. Besnard, K. Manamanni, V. Roncin, F. Du Burck, S. Trebaol, Low frequency noise blue external cavity diode laser, Proceedings Volume 12141, Semiconductor Lasers and Laser Dynamics X, 121410D, SPIE Photonics Europe, 2022, Strasbourg, France (5-7 avril 2022).

  10. G. Perin, D. Mammez, A. Congar, P. Besnard, K. Manamanni, V. Roncin, F. Du-Burck, S. Trebaol, Compact fiber-ring resonator for blue external cavity diode laser stabilization, Optics Express 29 (23), 37200-37209 (2021).

  11. T. Steshchenko, K. Manamanni, M. Sahni, A. Chaouche-Ramdane, V. Roncin, F. Du-Burck Limitations in the frequency stability transfer at 1.5 µm using optical fiber components, 2021 Joint Conference on European Time and Frequency Forum and the IEEE International Frequency Control Symposium (EFTF-IFCF 2021), Virtual, 7-17 juillet (2021).

  12. K. Manamanni, T. Steshchenko, V. Roncin et F. Du-Burck, Stability frequency transfer demonstration at 10-13 level of a semiconductor-based Frequency Comb via electrical and optical injection locking, Conference on Laser and Electro-Optics / European Quantum Electronics Conference (CLEO/EQEQ 2021), 20-24 juin, Virtual (2021).

  13. P. Grüning, A. Chaouche Ramdane, K. Manamanni, T. Aoudjit, V. Roncin, F. Du-Burck, All-Fiber Ring-Cavity for Frequency Stability Transfer at 1.55 µm, Applied Optics 58(6), 1502-1507 (2019).

  14. A. Chaouche Ramdane, K. Manamanni, V. Roncin, F. Du-Burck, Transfert de stabilité vers un peigne de fréquences à semi-conducteur au moyen d’une cavité à fibre, 25ème congrès général de la Société Française de Physique, Nantes, France (8-12 juillet 2019).

  15. K. Manamanni, V. Roncin, M. Sahni, F. Du-Burck, Effect of polarization modulation on the stability of a 1.5 µm laser locked to a fibre cavity, Conference on lasers and electro-optics (CLEO/Europe 2019), Munich, Allemagne (24-28 juin 2019).

  16. K. Manamanni, V. Roncin, M. Sahni, F. Du-Burck, Development of a Fibre-Based Acetylene Optical Frequency Standard at 1.54 μm, Conference on lasers and electro-optics (CLEO/Europe 2019), Munich, Allemagne (24-28 juin 2019).

© 1998 - 2024 Laboratoire de physique des lasers (LPL). Tous droits réservés.

Université Sorbonne Paris Nord (USPN) - Institut Galilée - CNRS LPL UMR7538

99, av. J.B. Clément - 93430 VILLETANEUSE - FRANCE

Logo LPL
Logo U13
Logo CNRS
Logo Institut Galilée
Logo Campus Condorcet