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Introduction
Why using atoms?

Light interferometry takes advantage of the wave nature of
light to obtain information on the medium where it travels

Matter wave interferometry gives access to a wider class of
information thanks to both external (particle mass) and
internal degrees of freedom

Different atoms may be used allowing mass comparisons

Atom cooling and trapping allow very long quantum
measurement times, long de Broglie wavelength, high
precision may be reached

⇒ Atom interferometry with neutral atoms developed rapidly after
the demonstration of laser cooling and trapping and led to
important advances in precise measurement.
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Introduction

General scheme of an atom interferometer: example of the
Mach-Zehnder interferometer.

beamsplitters

mirrors

phase object, or physical effect
responsible for a phase
difference

detection at the outputs

ϕ

The components of the interferometer may be material objects...
or light!
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Introduction
Example: gyroscope

Comparison of light and atom
interferometry for the
measurement of small rotations:

R

light: k = ω
c

v = c ⇒ k
v = ω

c2

Ω

phase difference: δϕ =

2k δ` = 2kRΩT = 2ΩπR2 k

v

atoms: k = Mv
~ ⇒ k

v = M
~

sensitivity:
δϕatoms

δϕlight
=

Mc2

~ω
∼ 1011!
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Outline

Outline of the lecture

1 Matter wave diffraction
Diffraction by material masks
Diffraction by light standing waves

2 Atom interferometry
Calculating the atomic phase: example of the double slit
Some applications of atom interferometry
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Matter wave diffraction

Matter wave diffraction

P. Gould et al. 1986
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Huyghens - Fresnel principle

Light waves: 4E + k2E = 0 for electric field E(r, t) and λ = 2π/k
Matter waves: 4ψ + k2ψ = 0 with k2 = 2ME/~2

For a monokinetic atomic beam: E = 1
2Mv2

0 and k = Mv0/~
⇒ formally equivalent wave equations; Huyghens – Fresnel
principle can be extended to matter waves:

with T = D/v0

and ~k = Mv0

ψ(X ,Y ,D) = ψ0 exp

(
ik(X 2 + Y 2)

2D

)
= ψ0 exp

(
iM(X 2 + Y 2)

2~T

)
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Diffraction through material masks
A single slit

Matter diffracts through material masks just as light does.
Example: diffraction of a beam of slow neutrons trough a slit of
width 93µm (ILL Grenoble):

The experiment is in excellent agreement with Huyghens–Fresnel
prediction.
Here, v = 206m/s, i.e. λ = 1.9 nm; a slower beam would given a
larger splitting ⇒ use cold atoms!
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Diffraction through material masks
Double slit

In a double slit experiment, Shimizu et al. observed Young fringes
formed by metastable neon onto a single atom detector.

Each spot corresponds to the impact of a single atom onto the
detector.
v = 83 cm/s ⇒ λ ' 23 nm at the double slit mask
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Diffraction through material masks
Atom holography

The extension to many holes gives atom holography, where an
arbitrary pattern of matter is obtained ⇒ Fresnel lenses or even
more complex... (Shimizu)

The atomic pattern (b) is the Fourier transform of the mask (a).
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Diffraction by a light mask
Thin grating limit

Light may be used instead of material masks, realizing a phase
mask with transmission 1.
Ex: a light standing wave as diffraction grating.

w

z

Motion along z :

H =
P2

2M
+ U0 sin2(kz)

Thin grating approximation:
w

v
= T � 1

ωosc
=

~
2
√

U0Erec
the atoms do not move along z while crossing the light beam.
With an initial state |pz = p0〉:

|ψ(T )〉 = e iU0T sin2(kz)/~ |pz = p0〉 =
∑
n

inJn(
U0T

2~
)|p0 − 2n~k〉
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Diffraction by a light mask
Experiments

weight:∣∣∣Jn(
U0T
2~ )

∣∣∣2
sodium atoms
Pritchard, 1985

C60 molecules
Zeilinger, 2001
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Diffraction by a light mask
Energy conservation

Energy change along z (for a small angle, or p0 � ~k):

∆Ez =
(p0 + 2~k)2

2M
− p2

0

2M
= 2p0vrec + 4Erec ' 4Erec

Allowed momentum change along x : ∼ ~/w
⇒ maximum energy change along x :

∆Ex ≤
(Mv + ~/w)2

2M
− 1

2
Mv2 ' ~v/w =

~
T

(also valid in pulsed mode).
⇒ possible only if 4Erec < ~/T or T < ~/4Erec

Is diffraction possible for a thick grating?
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Diffraction by a light mask
Bragg diffraction

Energy and momentum are conserved for particular initial
momenta p0 = (2n − 1)~k along z :
⇒ pf = −pi

zeroth order: Rabi oscillations between |pz = −~k〉 and
|pz = −~k〉 ⇒ beamsplitter with adjustable weights!
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Application to atom interferometry
A Mach-Zehnder interferometer

Example of use: a π/2− π − π/2 scheme for implementing a
Mach-Zehnder interferometer.

π/2 π π/2

⇒ ideal for building an inertial sensor: measurement of g (put it
vertically) or the Earth’s rotation (put it horizontally)!
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Atom interferometry

Atom interferometry
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Path integral formalism

How to calculate the relative phase between two arms of an atom
interferometer?
The probability amplitude for a particle to travel from A(ra, ta) to
B(rb, tb) is the Feynmann propagator

K (rb, tb; ra, ta) =
∑
Γ

e iSΓ/~

The sum is over all paths from A to B. The wave function at B is

ψ(rb, tb) =

∫
K (rb, tb; ra, ta)ψ(ra, ta) dra

and the action SΓ is deduced from the Lagrangian

SΓ =

∫ tb

ta

L (r(t), ṙ(t), t) dt
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Path integral formalism

A nice rule:
For a Lagrangian at most quadratic in r and ṙ, K is deduced from
the classical action: K ∝ e iScl/~

Why?
Summation over all paths

∑
Γ e iSΓ/~ : only stationary phase

contributes significantly
⇒ keep paths Γ minimizing the action, i.e. classical trajectories
Example of use:

free particle: L = Mṙ2/2

particle in gravitational field: L = Mṙ2/2−Mgz

particle in an harmonic trap: L = Mṙ2/2−Mω2
0r

2/2

particle in a rotating frame:
L = Mṙ2/2 + M ṙ · (Ω× r) + M(Ω× r)2/2
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Example: the double slit pattern

Let us calculate the interference pattern for the double slit system
in the gravitational field (Shimizu, 1996) in a 2D approach: figure

slits: x = ±d and z = 0; detector: z = −H; initial velocity: −v0.

Lagrangian: L = M(v2
x + v2

z )/2−Mgz

Trajectory (xa, za, ta = 0) → (xb, zb, tb = T ) :
vx =

xb − xa

T
=

∆x

T
is constant

vz(t) = vz(0)− gt with vz(0) =
zb − za

T
+

1

2
gT

z(t) = vz(0)t − 1
2gt2

The classical action is

Scl =

∫ T

0

1

2
M

(
v2
x + v2

z (t)
)
−Mgz(t) dt
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Example: the double slit pattern

After integration, we obtain (exercise...):

Scl =
1

2
M

∆r2

T
− 1

2
Mg(za + zb)T − 1

24
Mg2T 3

where ∆r2 = ∆x2 + ∆z2; this term will give the phase deduced
from Huyghens – Fresnel principle.
Initial state: ψa(x , z) ∝ (δ(x + d) + δ(x − d))χ(z)e−iMv0z/~

where χ(z) is a wave packet centered on z = 0 and with central
velocity vz(0) = −v0.
The final state is then:

ψb(xb, zb,T ) ∝
∫

e i(Scl(T )−Mv0za)/~ (δ(xa + d) + δ(xa − d))χ(za) dxa dza
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Example: the double slit pattern

Scl(xa, za,T ) = Scl(xa,T ) + Scl(za,T ): The integrations over xa

and za separate.
→ Along xa it gives the two contributions xa = ±d creating the
fringes.
→ Along za it corresponds to some amplitude A(T , zb):

ψb(xb, zb,T ) ∝ A(T , zb)

e
i
M(xb − d)2

2~T + e
i
M(xb + d)2

2~T


ψb(xb, zb = −H,T ) ∝ A(T ,−H) cos

(
Md

~T
xb

)
The fringe spacing is thus

hT

2Md
— but what is T?
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Example: the double slit pattern

A(T ,−H) ∝
∫

e
iM
2~

„
(−H−za)2

T
−gzaT−2v0za

«
χ(za) dza

χ is peaked around za = 0. The integral is very small unless the
argument is stationary in za around za = 0.

⇒ true if 2H/T − gT − 2v0 = 0 that is T =

√
v2
0 + 2gH − v0

g
recover the classical expression for the center of mass.
Final result for fringe spacing D:

D =
h

2Mgd

(√
v2
0 + 2gH − v0

)
Remark: if v2

0 � 2gH: figure

D ' h

Md
√

2gH
H =

λH

d
as in optics...
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Some applications

Applications of cold atom interferometry to metrology include:

accelerometers, gravimeter: sensitivity ∝ T 2

gradiometer (measurement of G )

measurement of rotations: Sagnac gyroscopes ∝ LT

clocks (internal state) ∝ T → Sébastien Bize

measurement of fundamental constants (h/M...) → Säıda
Guellati and Andreas Wicht
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Measurement of Earth’s rotation
Back to the atomic gyroscope

π/2− π − π/2 scheme with cesium atoms for an atomic gyroscope
(Kasevich, Stanford 1997-2002):

2-photon Raman transitions
π/2− π − π/2 sequence
beam velocity 300 m·s−1

area 0.2 cm2

π/2 π π/2

1 m 1 m

L = Mṙ2/2 + M ṙ · (Ω× r) + M(Ω× r)2/2

to first order in Ω:

Scl = S0 + MΩ ·
∫ T

0
r × ṙ dt with S0 =

M∆r2

2T

Hélène Perrin Atom interferometry



Diffraction Interferometry Conclusion Phase calculation Applications

Measurement of Earth’s rotation

B C

A D∫ T
0 r × ṙ dt =

∫
r × dr is the area of ABCD

The effect is opposite for ABC and ADC ⇒ ∆ϕ = 2MΩ · S/~

Results:
sensitivity in 2002:
2× 10−8 rad·s−1Hz−1/2

current sensitivity:
6× 10−10 rad·s−1Hz−1/2
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Conclusion

Laser cooling and trapping greatly improved measurement
time, and thus accuracy

Atom interferometry is well suited for metrology and
fundamental tests...

...on Earth or in space

Bose-Einstein condensation is a new tool at the frontier of
atomic physics and condensed matter communities

Future prospects: atom interferometry using BEC: 20000 Bloch
oscillations obtained in a BEC, current development of on-chip
clocks...
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Further reading

Steve Chu’s course in Les Houches session LXXII book

Paul Berman, Atom Interferometry (Academic Press, San
Diego, 1997).

lectures of Claude Cohen-Tannoudji at Collège de France
1992-93 and 1993-94 (in french)
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