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Solution of the problem

Sisyphus effect at low saturation

on a Jg = 1/2 ↔ Je = 3/2 transition

1 Model system

1.1 Laser field configuration

1. The total field can be written as:

EL(z, t) =
1
2
E0

(
exei(kz−ωLt) − ieye

i(−kz−ωLt) + c.c.
)

=
1
2
E0

(
e−iωLt(exeikz − ieye

−ikz)
)

+ c.c.

=
1
2
E0

(
e−iωLt((ex − iey) cos kz + i(ex + iey) sin kz)

)
+ c.c.

=
1
2
E0

√
2ε(z)e−iωLt + c.c. (1)

The field amplitude is EL =
√

2E0, and the polarisation is ε(z) = cos kz ε− −
i sin kz ε+ as expected.

2. The polarisation is σ− in z = 0, linear along (ex−ey)/
√

2 in z = λ/8, σ+ in z = λ/4,
linear along (ex + ey)/

√
2 in z = 3λ/8, again σ− in z = λ/2, etc. There is a strong

polarisation gradient, i.e. the polarisation varies on a short scale with a period λ/2.

1.2 Dipole force

1. We calculate the action of the operator
(
ε(z) · d̂+

)
on the two ground states |g,+1/2〉

and |g,−1/2〉:(
ε(z) · d̂+

)
|g,+1/2〉 =

1√
3

cos(kz)|e,−1/2〉 − i sin(kz)|e,+3/2〉, (2)(
ε(z) · d̂+

)
|g,−1/2〉 = cos(kz)|e,−3/2〉 − i

1√
3

sin(kz)|e,+1/2〉. (3)

2. The two states calculated above are orthogonal. As Λ is obtained from the operator
ε(z) · d̂+ and its hermitian conjugate, we deduce the following matrix elements of Λ
in the basis (|g,−1/2〉, |g,+1/2〉):

Λ++ = 〈g,+1/2|Λ|g,+1/2〉 =
1
3

cos2 kz + sin2 kz = 1− 2
3

cos2 kz, (4)
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Λ−− = 〈g,−1/2|Λ|g,−1/2〉 = cos2 kz +
1
3

sin2 kz = 1− 2
3

sin2 kz, (5)

Λ+− = 〈g,+1/2|Λ|g,−1/2〉 = 0 = Λ−+. (6)

The states |g,±1/2〉 are thus eigenstates of Λ with the eigenvalues given above.

3. The dipole force is obtained by differentiating the eigenenergies:

F react = −Π+1/2∇E+1/2 −Π−1/2∇E−1/2. (7)

1.2.1 Dissipative force

For an atom at rest, with a low saturation parameter and with orthogonal polarisations,
the dissipative force is simply the sum of the radiation pressure of both beams. With two
beams with equal intensities, this total force is zero for both internal states.

2 Dynamics of the internal degrees of freedom

2.1 Light shifts in the ground state

1. The light shifts are the eigenvalues of the operator Heff = h̄δ
′
Λ, which is diagonal in

the basis |g,±1/2〉. Here h̄δ
′
= h̄δs/2 = h̄δs0, where s0 is the saturation parameter

for a single beam. The light shifts are thus:

E±1/2(z) = h̄δs0Λ±±(z) = −3
2
U0Λ±±(z). (8)

From the eigenvalues calculated previously, we obtain:

E+1/2(z) = U0

(
−3

2
+ cos2 kz

)
and E−1/2(z) = U0

(
−3

2
+ sin2 kz

)
. (9)

2. The mean force is then:

F = U0

(
Π+1/2(z) 2k cos kz sin kz −Π−1/2(z) 2k cos kz sin kz

)
ez

= kU0M(z) sin 2kz ez. (10)

2.2 Optical pumping rate

1. The calculation of the optical pumping rates is the difficult point of this problem...
The time evolution of the population Π+1/2(z) is governed by a rate equation. The
population of the state |g,+1/2〉 varies due to a gain from the state |g,−1/2〉, pro-
portional to Π−1/2(z), and losses towards |g,−1/2〉, proportional to Π+1/2(z). The
coefficients in front of the populations are the optical pumping rates.

The departure rates are directly linked to the eigenvalues of Λ:

Γ
′

+1/2(z) = Γ
′〈g,+1/2|Λ|g,+1/2〉 = Γ

′
(

1− 2
3

cos2 kz

)
(11)

Γ
′

−1/2(z) = Γ
′〈g,−1/2|Λ|g,−1/2〉 = Γ

′
(

1− 2
3

sin2 kz

)
. (12)
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The arrival rate are more painful to obtain. Let us calculate the arrival rate on state
|g,m〉.

Γ
′′
m(z) = Γ

′〈g,+1/2|
∑

q=−1,0,+1

(ε?
q · d̂−)

(
ε(z) · d̂+

)
σgg

(
ε?(z) · d̂−

)
(εq · d̂+)|g,+1/2〉.

(13)
We recall ε(z) = cos kz ε− − i sin kz ε+ = cos kz ε−1 − i sin kz ε1.

The additional information gives the action of (εq · d̂+) on |g,m〉 as a function of the
Clebsh-Gordan coefficient:

(εq · d̂+)|g,m〉 = 〈Je m + q|Jg 1 m q〉|e,m + q〉, and,

〈g,m|(ε?
q · d̂−) = 〈Je m + q|Jg 1 m q〉〈e,m + q|.

Now, as ε?(z) = cos kz ε?
−1 + i sin kz ε?

1, we have(
ε?(z) · d̂−

)
|e,m + q〉 =

= cos kz
(
ε?
−1 · d̂−

)
|e,m + q〉+ i sin kz

(
ε?
1 · d̂−

)
|e,m + q〉 (14)

= cos kz 〈Je m + q|Jg 1 m + q + 1,−1〉|g,m + q + 1〉
+ i sin kz 〈Je m + q|Jg 1 m + q − 1, 1〉|g,m + q − 1〉. (15)

On the other side:

〈e,m + q|
(
ε(z) · d̂+

)
=

= cos kz 〈e,m + q|
(
ε−1 · d̂+

)
− i sin kz 〈e,m + q|

(
ε1 · d̂+

)
(16)

= cos kz 〈Je m + q|Jg 1 m + q + 1,−1〉〈g,m + q + 1|
− i sin kz 〈Je m + q|Jg 1 m + q − 1, 1〉〈g,m + q − 1|. (17)

The σgg operator gives the populations Π± when taken between the same |g,m〉
states, and 0 otherwise. The cross terms then disappear, and the final result is:

Γ
′′
m(z) = Γ

′ ∑
q=−1,0,+1

〈Je m + q|Jg 1 m q〉2 ×

(
cos2 kz 〈Je m + q|Jg 1 m + q + 1,−1〉2Πm+q+1

+ sin2 kz 〈Je m + q|Jg 1 m + q − 1, 1〉2Πm+q−1

)
. (18)

Some of these terms are zero, if |m + q± 1| > 1/2. For m = +1/2, we obtain for the
three terms:

q = 1: Γ′ × 1× (0 + sin2 kz × 1×Π+) = Γ′Π+ sin2 kz.

q = 0: Γ′ × 2
3 × (0 + sin2 kz × 1

3 ×Π−) = 2
9Γ′Π− sin2 kz.

q = −1: Γ′ × 1
3 × (cos2 kz × 1

3 ×Π+ + 0) = 1
9Γ′Π+ cos2 kz.
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It corresponds to the three ways of having an arrival to |g, 1/2〉: starting from |g, 1/2〉
and going back via the excited state |e, 3/2〉: Clebsh 1 × 1; starting from |g,−1/2〉
and arriving to |g, 1/2〉 through |e, 1/2〉: Clebsh 1

3 ×
2
3 ; starting from |g, 1/2〉 and

going back via the excited state |e,−1/2〉: Clebsh 1
3 ×

1
3 .

The total arrival rate to |g, 1/2〉 is finally

Γ
′′

+1/2(z) = Γ′
(

(1− 8
9

cos2 kz)Π+(z) +
2
9

sin2 kzΠ−(z)
)

. (19)

The same reasoning gives the arrival rate to the state |g,−1/2〉:

Γ
′′

−1/2(z) = Γ′
(

(1− 8
9

sin2 kz)Π−(z) +
2
9

cos2 kzΠ+(z)
)

. (20)

2. For the population Π+(z) we get the following differential equations:

dΠ+

dt
= Γ′

(
(1− 8

9
cos2 kz)Π+(z) +

2
9

sin2 kzΠ−(z)
)
− Γ

′
(

1− 2
3

cos2 kz

)
Π+(z)

dΠ+

dt
=

2
9
Γ′

(
sin2 kz Π−(z)− cos2 kz Π+(z)

)
. (21)

We define γ = 2
9Γ′ = 2

9s0Γ and recall that Π+(z) + Π−(z) = 1, and M(z) =
Π+(z)−Π−(z) = 2Π+(z)− 1. We get:

dΠ+

dt
= −γ

(
cos2 kz Π+(z)− sin2 kz Π−(z)

)
= −γ

(
Π+(z)− sin2 kz

)
(22)

dM
dt

= −γ
(
M(z) + 1− 2 sin2 kz

)
= −γ (M(z) + cos(2kz)) . (23)

We recover the proposed equation, with τP = γ−1. This time is the typical pumping
time between states |g, 1/2〉 and |g,−1/2〉, i.e. the time to reach the steady state.

3. In the steady state, dM
dt = 0 and M(z) = − cos(2kz) = 2 sin2 kz−1. The population

in the two ground states are then Π+(z) = sin2 kz and Π−(z) = cos2 kz. There is a
correlation between populations and light shifts: the population is always largest in
the state which has a lower potential energy.

4. For a kinetic energy much larger than the well depth (Mv2/2 � U0), the atoms are
not trapped. With a velocity kv � Γ′, it covers several wells before being pumped.
The condition kv � Γ means that the atom doesn’t move during the pumping
process, which can be considered as instantaneous. A pumping process occurs more
likely when the atom is at the top of a hill, which removes an energy of order U0

with a rate γ. This gives an idea of the cooling power in Sisyphus cooling.

The order of magnitude of the final temperature is the well depth: kBT ' U0 '
h̄Ω2

1/|δ| for large negative detunings.
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3 Cooling mechanism for a moving atom

3.1 Characteristic times

1. The time scale of the evolution of the internal variables is τP = 9/(2γs0).

2. At the bottom of on the the wells, say, for the state |g,−1/2〉 around z = 0, the
energy can be approximated by E−(z) ' −3U0/2 = k2U0z

2. This corresponds to a
harmonic oscillator MΩ2

oscz
2/2 with a frequency

Ωosc = k

√
2U0

M
=

√
4h̄|δ|s0

3M
. (24)

The typical external time is then text = Ω−1
osc.

N.B. The oscillation frequency can be written equivalently as h̄Ωosc = 2
√

U0Erec.

3. The assumption of hoping regime allows to consider that the atoms move slowly as
compared to the pumping time. In this case, we can eliminate the internal variables
adiabatically from the equation of motion. This semi-classical treatment allows the
introduction of a force and a diffusion in momentum space, as in the case of Doppler
cooling.

3.2 The hoping regime

1. With the assumption tint � text we can write z = vt (constant velocity) on the time
scale τP .

2. The differential equation for M(t) is now:

d
dt
M(t) +

1
τP
M(t) = − 1

τP
cos 2kvt. (25)

The forced solution is:

M(t) = −Re
1

1 + 2ikτP v
e2ikvt (26)

or:
M(t) = − 1

1 + (v/vc)2
cos 2kz − v/vc

1 + (v/vc)2
sin 2kz. (27)

3. The force averaged over one period Fz(v) = kU0M(t) sin(2kz) is given by:

Fz(v) = −kU0

2
v/vc

1 + (v/vc)2
= −αS

v

1 + (v/vc)2
(28)

with
αS = k2U0τP = −3h̄k2 δ

Γ
. (29)

For velocities v � vc, we obtain a friction force with a friction coefficient αS .
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4. The friction coefficient αS doesn’t depend on the laser intensity (the trap depth
decreases when s0 decreases, but the pumping rate is lowered accordingly and the
two effects compensate exactly). At large detuning and low intensity, αS is always
larger than the Doppler friction coefficient αD, Sisyphus cooling being then more
efficient. vc is the capture velocity, at which the force is largest.

3.3 Equilibrium temperature

1. At low saturation, we have seen in lecture 2 that DR ' Γ
2 s0h̄

2k2 for s = 2s0.

2. The spatial average Ddip of the diffusion coefficient is

Ddip =
3
4
h̄2k2 δ2

Γ
s0. (30)

3. At large detunings, Ddip � DR. The limit temperature of 1D Sisyphus cooling is
then:

kBT =
D

αS
' −1

4
h̄δs0 =

3
8
U0 '

h̄Ω2
1

8|δ|
. (31)
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