Atoms and photons Illustrations for Chapter 2

Hélène Perrin

October 12, 2022

Ramsey fringes

Quantum Monte-Carlo simulation

Hélène Perrin Atoms and photons

Optical Bloch equations

For X, Y, Z

OBE for the Bloch vector $\mathbf{r} = (X, Y, Z)$

$$\frac{dX}{dt} = \Delta Y - \Omega'' Z - \gamma' X$$
(1)
$$\frac{dY}{dt} = -\Delta X - \Omega' Z - \gamma' Y$$
(2)
$$\frac{dZ}{dt} = \Omega'' X + \Omega' Y - \Gamma(1 + Z)$$
(3)

Study of a useful case:

• Initial state
$$|g\rangle$$
: $Z(0) = -1$, $X(0) = Y(0) = 0$

•
$$\Omega$$
 real: $\Omega' = \Omega$, $\Omega'' = 0$

• On resonance $\Delta = 0$

$$\Rightarrow X(t) = 0$$

Rabi oscillations from Optical Bloch equations Dynamics

Equations for Z, Y:

$$\frac{dZ}{dt} = \Omega Y - \Gamma(1+Z)$$
(4)
$$\frac{dY}{dt} = -\Omega Z - \gamma' Y$$
(5)

It follows that dZ/dt (0) = 0.
 Equation for Z:

$$\frac{d^2 Z}{dt^2} + (\Gamma + \gamma')\frac{dZ}{dt} + (\Omega^2 + \Gamma\gamma')Z = -\Gamma\gamma'$$
(6)

Rabi oscillations from Optical Bloch equations Two regimes

$$rac{d^2 Z}{dt^2} + (\Gamma + \gamma') rac{d Z}{dt} + (\Omega^2 + \Gamma \gamma') Z = - \Gamma \gamma'$$

•
$$\Omega > \frac{|\Gamma - \gamma'|}{2}$$
: Damped oscillations
Oscillation frequency $\Omega' = \sqrt{\Omega^2 - \frac{(\Gamma - \gamma')^2}{4}}$
Damping at $\Gamma'/2$ where $\Gamma' = \Gamma + \gamma'$
• $\Omega < \frac{|\Gamma - \gamma'|}{2}$: Exponential decay at

$$\Gamma_{\pm}=rac{\Gamma'}{2}\pm\sqrt{rac{(\Gamma-\gamma')^2}{4}-\Omega^2}$$

(7)

Rabi oscillations from Optical Bloch equations Steady state

$$rac{d^2Z}{dt^2} + (\Gamma + \gamma')rac{dZ}{dt} + (\Omega^2 + \Gamma\gamma')Z = -\Gamma\gamma'$$

Steady state:

$$Z_{s} = -\frac{\Gamma\gamma'}{\Omega^{2} + \Gamma\gamma'}$$
(8)
$$Y_{s} = \frac{\Omega\Gamma}{\Omega^{2} + \Gamma\gamma'}$$
(9)

Rabi oscillations from Optical Bloch equations Small coupling limit

Rabi oscillations from Optical Bloch equations

Close to critical coupling

Rabi oscillations from Optical Bloch equations Medium coupling

Rabi oscillations from Optical Bloch equations Strong coupling limit

Damped Rabi oscillations from QMC approach

Link with quantum jumps:

5 trajectories

average over 100 trajectories

Saturated absorption spectroscopy

Level structure of rubidium

Saturated absorption spectroscopy

Linear spectrum (intensity on the detector) Expected linewidth: $\frac{\Gamma}{2\pi} = 6 \text{ MHz}$

Doppler broadening: Gaussian with $\sigma_{\nu} = \frac{1}{\lambda} \sqrt{\frac{k_B T}{M}} = 217 \text{ MHz}$ Figure from V. Jacques et al., Eur. J. Phys. **30**, 921 (2009).

Saturated absorption spectroscopy

Linear spectrum (relative absorption) Expected linewidth: $\frac{\Gamma}{2\pi} = 6$ MHz

Saturated absorption spectroscopy Setup

Saturated absorption setup

Resonance for $\Delta = \pm kv$

The velocity class v = 0 sees twice the intensity with respect to $v \neq 0$ \Rightarrow reduced absorption for $\Delta = 0$

Figure from V. Jacques et al., Eur. J. Phys. 30, 921 (2009).

Saturated absorption spectroscopy Spectrum

Saturated absorption spectroscopy: how many dips?

Figure from J. D. White and R. E. Scholten, Rev. Sci. Instr. 83, 113104 (2012)

Saturated absorption spectroscopy Spectrum

Saturated absorption spectroscopy: how many dips?

Figure from J. D. White and R. E. Scholten, Rev. Sci. Instr. 83, 113104 (2012)

Saturated absorption spectroscopy

Spectrum: zoom on two lines

Dark resonances

Observation in a sodium vapor

Dark resonance

Arimondo/Allegrini group [Alzetta et al. 1976]

Electromagnetically Induced transparency (EIT)

Absorption spectrum at high power

Autler-Townes splitting: two peaks split by Ω_2

Electromagnetically Induced transparency (EIT)

Absorption spectrum at low power

EIT: narrow dark window without absorption.

Electromagnetically Induced transparency (EIT)

Real part of polarizability

EIT: very large derivative of the real part of α .