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Introduction
Ultra cold atoms meet quantum physics

Single particles: wave nature of matter

λdB =
h

Mv

interferometry and holography, metrology,
collision physics de Broglie Schrödinger

Many particles: degenerate gases

nλ3
dB > 1

- importance of the quantum statistics (BE or
FD)
- Bose-Einstein condensation, coherence, Fermi
sea, superfluidity, quantum phase transitions...
- links with condensed matter physics
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Introduction

A wide range of applications:
High precision spectroscopy
(Doppler-free lines)

Quantum information and
quantum computation

Metrology (fountains, optical
clocks...)

New insights in condensed
matter physics: Bloch
oscillations, superfluid-insulator
transitions, Cooper pairing,
search for Anderson
localization... (new! observed in
momentum space in Cs clouds)

etc...

anti-hydrogen
trapping (Hänsch)

micro-wave clock
LNE-SYRTE
Clairon / Bize /
Salomon

quantum memory
(Kimble)

vortex lattice (Ketterle)
bosonic BEC/ fermionic
BEC-BCS cross-over
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Outline

Outline of the lecture

1 Light forces on atoms

2 Doppler cooling and beyond

3 Traps for neutral atoms

4 Bose-Einstein condensation
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Light forces on atoms

Light forces on atoms
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Atom-light interaction

e Γ

~ω ~ω0

g

Consider photons of energy ~ω, momentum
~k, quasi-resonant with a transition between
states e and g : ~ω ' Ee − Eg = ~ω0.
⇒ two-level approximation

After each absorption/emission, the atomic velocity changes by

vrec =
~k

M

the recoil velocity, at a rate ' Γ.
For alkali, 3 ≤ vrec ≤ 30 mm.s−1, Γ−1 ∼ 10 to 100 ns.
Corresponding acceleration: apr ' Γvrec ∼ 104 to 105 g
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Atom-light interaction

3 systems in interaction : laser – atom – vacuum

Ω Γ

~ω ~ω0

The laser field E(r, t) = E(r)/2×
(
ε(r)e−iωt−iφ(r) + c.c.

)
is

coupled to the atomic electric dipole moment d = 〈e|D̂|g〉 with
the Rabi frequency

~Ω(r) = − (d.ε(r)) E(r)

N.B. link with saturation intensity Is : Ω2/Γ2 = I/2Is
Typical value of Is : a few mW/cm2
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Light forces

The coupling term responsible for light forces is (in RWA)

V̂laser = −D̂.E(r̂, t) ' Ω(r̂)

2

(
|e〉〈g |e−iωt−iφ(̂r) + h.c.

)
The mean force acting on an atom for a given position r and
velocity v is obtained in the Heisenberg picture through

F = 〈F̂〉 = 〈dP̂

dt
〉 =

1

i~
〈
[
P̂, Ĥ

]
〉 = −〈∇V̂laser〉

Two types of gradients give rise to forces: intensity gradient or
phase gradient.
N.B. Fluctuation of the mean force is responsible for momentum
diffusion.
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Light forces

The radiation pressure force arises from a phase gradient.
ex: plane wave φ(r) = −k.r

Fpr = ~k
Γ

2

s

1 + s
s =

Ω2/2

δ2 + Γ2/4
=

I/Is
1 + 4δ2/Γ2

s is the saturation parameter. δ = ω − ω0 is the detuning.

The dipole force is due to an intensity gradient.

Fdip = −~δ
2

∇s(r)

1 + s(r)

It derives from the dipole potential Udip =
~δ
2

ln (1 + s(r)).
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Radiation pressure
Physical interpretation

Fpr = ~k
Γ

2

s

1 + s
resonant photons atom

absorption – spontaneous emission cycles, at a rate γfluo

γfluo =
Γ

2

s

1 + s
each changes the atomic momentum by ~k = Mvrec in average

Force: Fpr = ~kγfluo maximal value: Fpr = ~k
Γ

2
ex: for sodium atoms, a ∼ 105 g
⇒ stopping a thermal beam at v = 100m/s over 1 cm!
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Zeeman effect

Reminder: Zeeman effect for a J = 1 spin: ∆E = mJgJµBB.

m = −1
m = 0
m = 1

E

J = 1

B

ω′0 = ω0 + γB where γ =
gJµB

~
The resonance frequency is position dependent in a inhomogeneous
magnetic field.
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Radiation pressure
Example of application

Zeeman slower (B. Phillips et al., J. Hall et al., 1985)

oven tapered magnetic field resonant laser
such that ω0(z) = ω0 + γB(z) = ω + kv(z)

stopped atomic beam
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Dipole force
Low saturation limit

The dipole force comes from photon redistribution inside the laser
beam: stimulated emission.

In the limit of low saturation s � 1:

Udip =
~δ
2

ln (1 + s(r)) ' ~δs
2

s = Ω2/2
δ2+Γ2/4

For large detunings |δ| � Γ, s ' Ω2

2δ2

and the dipole potential is Udip '
~Ω2

4δ
δ < 0: attractive potential δ > 0: repulsive potential

spontaneous emission rate γfluo ∝ Γ
Ω2

δ2
∝ Γ

δ
Udip

⇒ conservative force for large detunings
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Dipole force
Negative detunings

ω0 For red detunings (δ < 0), attraction to high
intensity regions.

crossed dipole trap optical lattice
H. Perrin, PhD thesis D. Boiron, PhD thesis

trap depth from 1µK to several mK.
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Dipole force
Positive detunings

For blue detunings (δ > 0), repulsion from
high intensity regions.

evanescent wave mirror atoms bouncing off the mirror
J. Dalibard (1994)
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Dipole force
Optical lattices

Optical lattices: standing waves with δ > 0 or δ < 0

E

U0

λ/2
Important parameters:

interband spacing ~ωosc = 2
√

U0Erec Erec = ~2k2

2M

lowest band width / tunneling:

J ∝ δE ∝ e−2
√

U0/Erec possibly small

effective mass in the lowest band: Meff ∝ 1/δE possibly large

Lamb-Dicke regime: ∆x � λ⇐⇒ ~ωosc � Erec
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Doppler cooling and beyond

Doppler cooling and beyond
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Principle of Doppler cooling

Two counter-propagating red detuned laser beams:

+k, ω v −k, ω ω − k.v ω + k.v

In the low intensity limit s � 1, the radiation pressure forces add:

F = ~k
Γ

2
(s+(v)− s−(v)) s±(v) =

I/Is
1 + 4(δ ∓ k.v)2/Γ2

At low velocity v � Γ/k, one gets a friction force F = −αv with a
friction coefficient α = ~k2 s0

−2δΓ
δ2+Γ2/4

α > 0 for δ < 0
αmax = 2~k2 s0 for δ = −Γ/2
damping time ∼ ~/Erec:
a few 100µs for Rb @ s = 0.1
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3D molasses

Generalization to 3D:

first Na molasses at NIST
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Limit temperature in Doppler cooling

Fluctuation of the cooling force due to random direction of
spontaneous emission
⇒ Competition cooling vs random walk in momentum space

diffusion coefficient Dp = ~2k2Γs0

limit temperature : kBTD =
Dp

α
>

Dp

αmax
=

~Γ

2
for δ = −Γ/2

TD is the Doppler temperature
ex: TD = 240µK for sodium, TD = 125µK for cesium

What about experiments?
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First temperature measurements

Bill Phillips, 1988

The measured temperature is lower than expected!
The scaling with laser detuning is also different.
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Sisyphus cooling

Missing ingredients: polarization gradients and internal atomic
structure.

Optical pumping correlated
with potential depth.

Limit temperature kBT ∝ I/δ.
Fundamental limit for Sisyphus cooling: the recoil temperature.
Typical value: Trec = 2Erec/kB = 2.4µK for Na, 200 nK for Cs.
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Subrecoil cooling

Is it possible to beat the recoil limit? YES!
Recipe for subrecoil laser cooling:

1 Protect atoms with very low velocity from laser light: create a
dark state

2 Excite other atoms: random walk in momentum space to
accumulate atoms into the dark state

Example: Raman cooling: counter-propagating ω1 and ω2

ω2
ω1

∆0

Narrow 2-photon velocity selective transition:
ω1 − ω2 −∆0 = 2kv + 4Erec

~
⇒ excite only rapid atoms...
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Laser cooling of ions

Ions also may be cooled to very low temperature, through sideband
cooling.

Ions may be strongly confined thanks to their charge, in both
states g and e, in the same harmonic trap, with ωosc in the
MHz range.

One reaches the Lamb-Dicke limit ∆x � λ, or ~ωosc � Erec

In this regime, spontaneous emission preserves the external
harmonic level n: |e, n〉 → |g , n〉
Pumping on the red sideband |g , n〉 → |e, n − 1〉
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Laser cooling of ions

Ions also may be cooled to very low temperature, through sideband
cooling.

⇒ cooling to harmonic ground state
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Traps for neutral atoms

Traps for neutral atoms

a rubidium MOT at LPL
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The magneto-optical trap

Adding a magnetic gradient b′ to the
molasses configuration results in
atom trapping.
The beam polarizations are of
opposite circulation and create a
radiation pressure imbalance.

σ+ σ−

F+ F−

J ′ = 1

J = 0

σ+ σ−

m′ = 1
m′ = 0
m′ = −1

m = 0

⇒ position dependent detuning δ ± µb′x
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The magneto-optical trap

Adding a magnetic gradient b′ to the
molasses configuration results in
atom trapping.
The beam polarizations are of
opposite circulation and create a
radiation pressure imbalance.

Resulting force at low saturation: F = −αv − κr

κ = µb′s0
−2δΓ

δ2 + Γ2/4
expression similar to α

A MOT can be loaded from a Zeeman slower or directly from a
vapour.
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The magneto-optical trap

Typical figures:

easy to implement and widely used for
alkali – less easy for alkaline earth, etc

temperature T ∼ 100Trec limited by
the magnetic gradients

density n ∼ 1010 cm−3 typically,
limited by photon reabsorption
(multiple photon scattering)

loading time between 0.1 and 10 s,
depending on the background pressure 1/r repulsive

force
⇒ an ideal starting point for many experiments!
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Conservative traps

The MOT is a dissipative trap. The phase space density in a MOT
is limited to 10−7–10−6 typically.
Random photon scattering limits its performances in this regards.
To cool further: evaporative cooling in a conservative trap is
generally used. Two kinds of conservative traps for neutral atoms:

optical dipole traps are conservative for a large enough
detuning

magnetic traps are most commonly used for reaching quantum
degeneracy of atoms polarized in their upper spin state

V (r) = µ|B(r)| where |B| has a local non zero minimum
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Evaporative cooling
Principle

Evaporative cooling occurs through rethermalization after filtering
the “hottest” particles.

equilibrium
at T1

decrease trap depth
+ elastic collisions

new equilibrium
at T2 < T1
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Evaporative cooling
Implementation in a magnetic trap

Radio-frequency evaporative cooling: the RF field resonantly
out-couples atoms from the trap at a given location.

atoms evaporated from the
magnetic trap, falling due

to gravity (LPL)
N.B. Evaporative cooling may also be implemented in an optical
trap by lowering the laser intensity.
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Bose-Einstein condensation

Bose-Einstein condensation

first BEC, Cornell/Wieman, JILA (1995)
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Bosons and fermions

Reminder: bosons and fermions at low temperature.

bosons

Bose-Einstein statistics

f (E ) :
1

1
z eE/kBT−1

f (E 6= 0) −−−→
T→0

0

fermions

Fermi-Dirac statistics

f (E ) :
1

1
z eE/kBT+1

EF

0 ≤ f ≤ 1 at most 1
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Critical temperature

For a given atom number N,
the number of atoms in the
excited states Nex is limited
and below a critical
temperature Tc , the
occupancy of the ground state
becomes macroscopic (∼ N).

1

0
0 1

Bose-Einstein condensation is a quantum phase transition directly
linked to bosonic statistics.
Tc is determined by nλ3

dB ∼ 1 where λdB = h/
√

2πMkBT is the
thermal de Broglie wavelength.
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Critical temperature

d

cooling

at nλ3
dB ∼ 1: a single wave function for all the atoms!
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BEC production

Typical transition temperature: a few 100 nK for 106 atoms in
a magnetic trap.

Combine laser cooling and evaporative cooling

Ultra high vacuum required (10−12 mbar)

as a result: quite complex experiments...

Wolfgang Ketterle
(Li experiment, vacuum)

Wolfgang Ketterle
(Li experiment, lasers)
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BEC production

...which may be compacted if
needed...

Dana Anderson’s setup
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BEC production

...for example for low gravity
or space experiments!

an atom chip (Paris)
Bremen drop tower
(german collaboration)

Hélène Perrin From laser cooling to Bose-Einstein condensation



Forces Cooling Traps BEC

BEC detection

Onset of BEC: strong population increase of a low momentum
state.
Detection by absorption imaging in time of flight experiments.

in situ images: position distribution in the trap
TOF images: velocity distribution
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BEC detection

Onset of BEC: strong population increase of a low momentum
state.
Detection by absorption imaging in time of flight experiments.
Anisotropy in the ballistic expansion from a cigar shaped trap:

thermal gas:

∆px = ∆py =
√

MkBT

BEC:

∆px =
~

2∆x
6= ∆py

BEC @ LPL

Hélène Perrin From laser cooling to Bose-Einstein condensation



Forces Cooling Traps BEC

BEC coherence

Atoms in a BEC occupy the same state ⇒ phase coherence over
the whole cloud.
First evidence: interference between 2 BECs (Ketterle, MIT)
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BEC coherence

Atoms in a BEC occupy the same state ⇒ phase coherence over
the whole cloud.
Further demonstration: beat note between two atom lasers
(Esslinger/Bloch, Munich) ⇒ coherence length = BEC size

RF outcoupling
T > Tc T < Tc T � Tc
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Atom laser

Bose-Einstein condensates may be considered as an atom laser.
Outcoupling may be pulsed or continuous:

Orsay

Ideal for atom interferometry... once interaction issues have been
addressed!
N.B. Low dimensionality affects the coherence properties.
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Interactions in a BEC

Interactions play an important role in the physics of BEC and
degenerate Fermi gases. A BEC is described by the
Gross-Pitaevskii equation:

i~
∂ψ

∂t
= − ~2

2M
4ψ + V (r)ψ +

4π~2a

M
|ψ|2ψ

The scattering length a describes the interaction strength:
a > 0: repulsive interactions, stable trapped BEC
a < 0: attractive interaction, collapse.
This non linear Schrödinger equation was introduced for describing
superfluid helium. A Bose-Einstein condensed dilute gas is a
superfluid.
⇒ critical velocity, solitons, vortices, persistent current...
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BEC as a superfluid

A bright soliton: dispersion balanced by attractive interactions

Christophe Salomon, ENS Paris
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BEC as a superfluid

Abrikosov vortex lattices:

single vortex:
angular momentum = ~
(Dalibard)

vortex lattice
(Cornell)
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Interactions in a BEC

Interactions may be controlled at will for most species, in sign and
amplitude, by tuning the magnetic field through Feshbach
resonances:

Feshbach resonance in fermionic 40K (D. Jin)

Controlling the interactions allows the creation of molecular BECs
and the Cooper pairing of fermions to obtain a fermionic superfluid.
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BEC in a double well

When interactions compete with
tunneling between two wells, one
observes either Josephson
oscillations or self-trapping:

Oberthaler (2005)
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BEC in optical lattices

BEC in optical lattices: Bloch band mapping

(Immanuel Bloch)
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BEC in optical lattices

Fermions: imaging the Fermi sea:

(Tilman Esslinger)
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BEC in optical lattices

A quantum phase transition: Mott insulator to superfluid
transition.
⇒ From a number state to a phase state.

superfluid
(phase state)

Mott insulator
(number phase)

(Bloch 2002)

The Mott insulator state is a highly correlated state, useful for
molecular production or quantum computing...
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BEC: latest news

Since the first observation of BEC in dilute gases in 1995, the field
of ultracold atoms – bosons or fermions – gives rise to a number of
major achievements, and is still growing.
Latest news from BEC 2007 conference:

observation of persistent current

Kosterlitz-Thouless transition in two different systems

BEC in high finesse cavities

spin textures in BECs

number squeezing in a double well system

double particle tunneling in optical lattices

fermionic pairing for unequal spin populations...
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Further reading

On laser cooling and trapping:
– C. Cohen-Tannoudji: Atomic motion in laser light, in Fundamental
systems in Quantum optics, Les Houches, Session LIII (Elsevier, 1992).
– H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping,
(Springer, New York, 1999)
On BEC:
– Coherent Matter Waves, Les Houches, Session LXXII, R. Kaiser, C.
Westbrook and F. David Eds., (EDP Sciences; Springer, Berlin, 2001)
– W. Ketterle, D.S. Durfee, and D.M. Stamper-Kurn: Making, probing
and understanding Bose-Einstein condensates, In Proceedings Enrico
Fermi School, Course CXL (IOS Press, Amsterdam, 1999)
– F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari, Rev. Mod. Phys.
71, 463 (1999)
– C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute
Gases (Cambridge University Press, Cambridge 2001).
– Lev P. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Clarendon Press, Oxford, 2003).
On BEC in optical lattices:
– Immanuel Bloch, Ultracold quantum gases in optical lattices, Nature
Physics 1, 23 - 30 (2005)
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