Low-dimensional Bose gases Part 2: phase diagrams of low D systems

Hélène Perrin

Laboratoire de physique des lasers, CNRS-Université Paris Nord

Photonic, Atomic and Solid State Quantum Systems Vienna, 2009

Outline

OUTLINE OF THE LECTURE

1D Bose gas

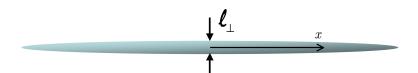
- Regimes of the 1D Bose gas at T = 0
- Thermal phase fluctuations
- Tonks-Girardeau gas

2 2D Bose gas

- Uniform interacting 2D gas
- Berezinskii-Kosterlitz-Thouless transition
- Trapped interacting 2D gas

1D Bose gas

1D interacting Bose gas



Hélène Perrin Low-dimensional Bose gases | Part 2

.⊒ . ►

Phases of the 1D Bose gas

N.B. stay in the regular case a $\ll \ell_{\perp},\,g_1=2\hbar\omega_{\perp}a$

- interaction parameter $\gamma = \frac{Mg_1}{\hbar^2 n} = \frac{2a}{n\ell_\perp^2}$
- trapped gas

Longitudinal trapping along x with frequency ω_x , $\ell_x = \sqrt{\frac{\hbar}{M\omega_x}}$

new parameter
$$\alpha = \frac{g_1 \ell_x^{-1}}{\hbar \omega_x} = \frac{2a\ell_x}{\ell_\perp^2} = \gamma n \ell_x > \gamma$$

• identify 3 regimes: Gaussian BEC, Thomas-Fermi BEC $(\mu \gg \hbar \omega_x)$, Tonks gas $(\gamma \gg 1)$

Weak interactions

Weak interactions $\gamma \ll 1$: true BEC at T = 0 thanks to the $\hbar \omega_x$ low energy cut-off

• Thomas-Fermi regime $\mu \gg \hbar \omega_x$ and $\gamma < 1$:

$$\mu = \frac{\hbar\omega_x}{2} \left(\frac{3N\alpha}{2}\right)^{2/3} \qquad R_{\rm TF} = \ell_x \left(\frac{3N\alpha}{2}\right)^{1/3}$$

Consistency: $N \gg \alpha^{-1}$

Weak interactions

Weak interactions $\gamma \ll 1$: true BEC at T = 0 thanks to the $\hbar \omega_x$ low energy cut-off

• Thomas-Fermi regime $\mu \gg \hbar \omega_x$ and $\gamma < 1$:

$$\mu = \frac{\hbar\omega_x}{2} \left(\frac{3N\alpha}{2}\right)^{2/3} \qquad R_{\mathsf{TF}} = \ell_x \left(\frac{3N\alpha}{2}\right)^{1/3}$$

Consistency: $N \gg \alpha^{-1}$

$$n \sim \frac{N}{R_{\rm TF}} \Longrightarrow \gamma \sim \left(\frac{\alpha^2}{N}\right)^{2/3}$$

weak interactions $\gamma < 1 \Longrightarrow N > N^*$, with $N^* = \alpha^2$

Weak interactions

Weak interactions $\gamma \ll 1$: true BEC at T = 0 thanks to the $\hbar \omega_x$ low energy cut-off

• Thomas-Fermi regime $\mu \gg \hbar \omega_x$ and $\gamma < 1$:

$$\mu = \frac{\hbar\omega_x}{2} \left(\frac{3N\alpha}{2}\right)^{2/3} \qquad R_{\mathsf{TF}} = \ell_x \left(\frac{3N\alpha}{2}\right)^{1/3}$$

Consistency: $N \gg \alpha^{-1}$

$$n \sim \frac{N}{R_{\rm TF}} \Longrightarrow \gamma \sim \left(\frac{\alpha^2}{N}\right)^{2/3}$$

weak interactions $\gamma < 1 \Longrightarrow N > N^*$, with $N^* = \alpha^2$

• $N < \alpha^{-1}$, $\gamma < \alpha \ll 1$: Gaussian BEC (strong trap, few atoms)

Strong interactions

Strong interactions $\gamma > 1$: implies $\alpha \gg 1$ and $N < N^*$ (weak trap, few atoms) \implies Tonks gas

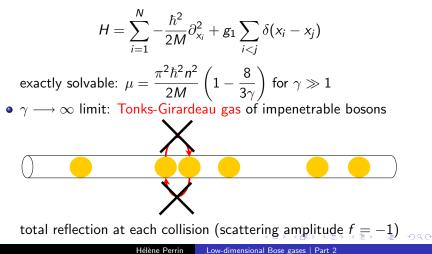
• uniform 1D gas: Lieb-Liniger model

$$H = \sum_{i=1}^{N} -\frac{\hbar^2}{2M} \partial_{x_i}^2 + g_1 \sum_{i < j} \delta(x_i - x_j)$$
exactly solvable: $\mu = \frac{\pi^2 \hbar^2 n^2}{2M} \left(1 - \frac{8}{3\gamma}\right)$ for $\gamma \gg 1$

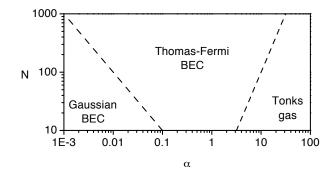
Strong interactions

Strong interactions $\gamma > 1$: implies $\alpha \gg 1$ and $N < N^*$ (weak trap, few atoms) \implies Tonks gas

• uniform 1D gas: Lieb-Liniger model



3 regimes of interacting 1D Bose gas at T = 0



Limits: $N = \alpha^{-1}$ and $N = \alpha^{2}$ From Petrov, Gangardt, Shlyapnikov, QGLD 2003 Proceedings

Thermal phase fluctuations in the 1D Bose gas

Now ${\cal T}>$ 0, weak interacting regime $\gamma\ll 1$

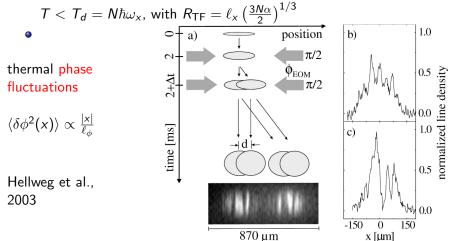
• thermal density fluctuations are small; TF profile for

$$T < T_d = N\hbar\omega_x$$
, with $R_{\mathsf{TF}} = \ell_x \left(\frac{3Nlpha}{2}\right)^{1/3}$

Thermal phase fluctuations in the 1D Bose gas

Now T > 0, weak interacting regime $\gamma \ll 1$

• thermal density fluctuations are small; TF profile for



Thermal phase fluctuations in the 1D Bose gas

Now ${\cal T}>$ 0, weak interacting regime $\gamma\ll 1$

• thermal density fluctuations are small; TF profile for

 $T < T_d = N\hbar\omega_x$, with $R_{\rm TF} = \ell_x \left(\frac{3N\alpha}{2}\right)^{1/3}$

- thermal phase fluctuations $\langle \delta \phi^2(x) \rangle \propto \frac{|x|}{\ell_{\phi}}$ no true BEC, only a quasi-condensate
- coherence length $\ell_{\phi} = \frac{\hbar^2 n_s}{M k_B T}$; $n_s =$ superfluid density

Thermal phase fluctuations in the 1D Bose gas

Now ${\it T}>$ 0, weak interacting regime $\gamma\ll 1$

• thermal density fluctuations are small; TF profile for

 $T < T_d = N\hbar\omega_x$, with $R_{\text{TF}} = \ell_x \left(\frac{3N\alpha}{2}\right)^{1/3}$

- thermal phase fluctuations $\langle \delta \phi^2(x) \rangle \propto \frac{|x|}{\ell_{\phi}}$ no true BEC, only a quasi-condensate
- coherence length $\ell_{\phi} = \frac{\hbar^2 n_s}{M k_B T}$; $n_s =$ superfluid density
- coherence temperature $T_{\phi} \approx N_0 \frac{\hbar^2}{MR_{\pi\pi}^2} = N_0 \frac{\hbar^2 \omega_x^2}{2\mu}$

$$T_{\phi} = T_d \frac{\hbar \omega_x}{\mu} = \frac{T_d}{(N\alpha)^{2/3}} \ll T_d$$

Thermal phase fluctuations in the 1D Bose gas

Now ${\it T}>$ 0, weak interacting regime $\gamma\ll 1$

• thermal density fluctuations are small; TF profile for

 $T < T_d = N\hbar\omega_x$, with $R_{\text{TF}} = \ell_x \left(\frac{3N\alpha}{2}\right)^{1/3}$

- thermal phase fluctuations $\langle \delta \phi^2(\mathbf{x}) \rangle \propto \frac{|\mathbf{x}|}{\ell_{\phi}}$ no true BEC, only a quasi-condensate
- coherence length $\ell_{\phi} = \frac{\hbar^2 n_s}{M k_B T}$; $n_s =$ superfluid density
- coherence temperature $T_{\phi} \approx N_0 \frac{\hbar^2}{MR_{\pi\pi}^2} = N_0 \frac{\hbar^2 \omega_x^2}{2\mu}$

$$T_{\phi} = T_d \frac{\hbar \omega_x}{\mu} = \frac{T_d}{(N\alpha)^{2/3}} \ll T_d$$

• exponential decay of $g^{(1)}(x) = \exp(-\frac{|x|}{\ell_{\phi}})$ \implies Lorentzian momentum distribution

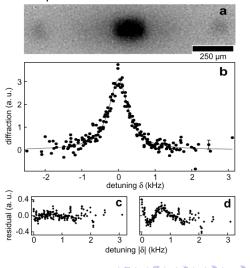
Thermal phase fluctuations in the 1D Bose gas

Momentum distribution in a 1D quasi-condensate Richard et al., 2003

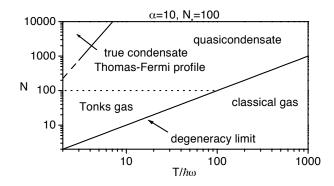
a: Bragg scattering technique

b: Lorentzian distribution for p_x

c/**d**: comparison Lorentzian/Gaussian fit



Summary: diagram of states at finite T



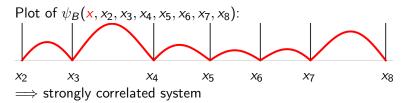
Limits: $T = T_d$, $T = T_\phi$ and $N = N^*$ From Petrov, Gangardt, Shlyapnikov, QGLD 2003 Proceedings

Tonks-Girardeau gas

What is a Tonks-Girardeau gas?

• ground state: fermionization (Girardeau 1960)

$$\psi_B(x_1,\ldots,x_N) = \prod_{i< j} \left| \sin[\frac{\pi}{L}(x_i-x_j)] \right| = |\psi_F(x_1,\ldots,x_N)|$$

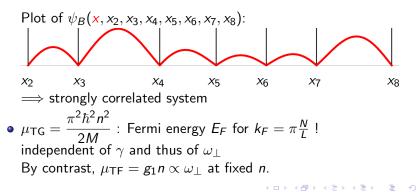


Tonks-Girardeau gas

What is a Tonks-Girardeau gas?

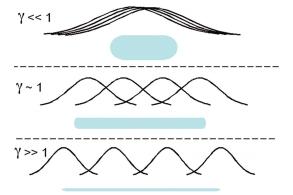
• ground state: fermionization (Girardeau 1960)

$$\psi_B(x_1,\ldots,x_N) = \prod_{i< j} \left| \sin[\frac{\pi}{L}(x_i-x_j)] \right| = |\psi_F(x_1,\ldots,x_N)|$$



Kinoshita et al., 2004 Basic idea:

transverse squeezing changes axial expansion



transverse squeezing has no effect on the axial distribution (or energy)

Kinoshita et al., 2004

-

• trapped gas: local density approximation, valid for $\mu_0 \gg \hbar \omega_x$

$$\mu(n(x)) + U(x) = \mu_0 = N\hbar\omega_x = E_F$$
 $\gamma(x) = \gamma(n(x))$
Thomas-Fermi profile $n(x) = n_0\sqrt{1 - \frac{x^2}{R^2}}$ with $R = \sqrt{2N}\ell_x$

Kinoshita et al., 2004

• trapped gas: local density approximation, valid for $\mu_0 \gg \hbar \omega_x$

$$\mu(n(x)) + U(x) = \mu_0 = N\hbar\omega_x = E_F \qquad \gamma(x) = \gamma(n(x))$$

Thomas-Fermi profile $n(x) = n_0 \sqrt{1 - \frac{x^2}{R^2}}$ with $R = \sqrt{2N}\ell_x$

• Method: transverse confinement in an optical lattice $U_0 \sin^2(ky) \sin^2(kz)$; fixed density; vary U_0 ; $\alpha \in [1, 8]$

Kinoshita et al., 2004

• trapped gas: local density approximation, valid for $\mu_0 \gg \hbar \omega_x$

$$\mu(n(x)) + U(x) = \mu_0 = N\hbar\omega_x = E_F \qquad \gamma(x) = \gamma(n(x))$$

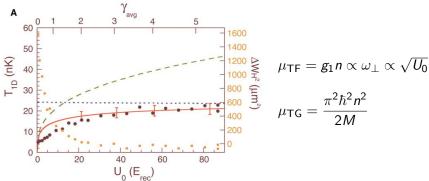
Thomas-Fermi profile $n(x) = n_0 \sqrt{1 - \frac{x^2}{R^2}}$ with $R = \sqrt{2N}\ell_x$

- Method: transverse confinement in an optical lattice $U_0 \sin^2(ky) \sin^2(kz)$; fixed density; vary U_0 ; $\alpha \in [1, 8]$
- Plot the released longitudinal energy $\mu \gg \hbar \omega_{\perp}$ as a function of U_0 or $\gamma_{avg} = \langle \gamma(x) \rangle$

Experimental evidence for a Tonks-Girardeau gas

Kinoshita et al., 2004

Results: released longitudinal energy $\mu \gg \hbar \omega_{\perp}$ measured by TOF



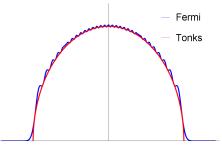
The released energy tends to the Tonks-Girardeau chemical potential, with all energy being kinetic.

Bosons in the Tonks-Girardeau regime behave like fermions...

• same density distribution

Fermi: $\sum |\phi_n(x)|^2$ h.o. eigenfunctions

Tonks: TF distribution $n(x) = n_0 \sqrt{1 - \frac{x^2}{R^2}}$ = Fermi distribution for $N \to \infty$



Bosons in the Tonks-Girardeau regime behave like fermions...

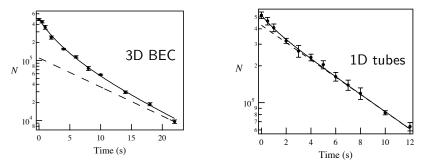
- same density distribution
- same collective excitation spectrum

Bosons in the Tonks-Girardeau regime behave like fermions...

- same density distribution
- same collective excitation spectrum

• same local density correlation functions $g^{(2)}(0)$, $g^{(3)}(0)$... $g^{(3)}(0) \propto \frac{n^3}{\gamma^6} \Longrightarrow$ 3-body losses strongly suppressed at large γ Experiment by Laburthe Tolra et al., 2004: comparison of 3-body decay between a 3D BEC and a series of 1D tubes.

Laburthe Tolra et al., 2004 $g^{(3)}(0) \propto \frac{n^3}{\gamma^6} \Longrightarrow$ 3-body losses strongly suppressed at large γ



 $\gamma \approx 0.5 \quad \frac{K_3^{1D}}{K_3^{3D}} = 0.14$ 3-body loss reduction by a factor 7!

Bosons in the Tonks-Girardeau regime behave like fermions...

- same density distribution
- same collective excitation spectrum
- same local density correlation functions $g^{(2)}(0)$, $g^{(3)}(0)$... $g^{(3)}(0) \propto \frac{n^3}{\gamma^6} \Longrightarrow$ 3-body losses strongly suppressed at large γ (Laburthe et al., 2004)

Bosons in the Tonks-Girardeau regime behave like fermions...

- same density distribution
- same collective excitation spectrum
- same local density correlation functions $g^{(2)}(0)$, $g^{(3)}(0)$... $g^{(3)}(0) \propto \frac{n^3}{\gamma^6} \Longrightarrow$ 3-body losses strongly suppressed at large γ (Laburthe et al., 2004)

...but Bose statistics still present:

 phase correlations linked to the statistics lead to a very different g⁽¹⁾ function

Bosons in the Tonks-Girardeau regime behave like fermions...

- same density distribution
- same collective excitation spectrum
- same local density correlation functions $g^{(2)}(0)$, $g^{(3)}(0)$... $g^{(3)}(0) \propto \frac{n^3}{\gamma^6} \Longrightarrow$ 3-body losses strongly suppressed at large γ (Laburthe et al., 2004)

...but Bose statistics still present:

- phase correlations linked to the statistics lead to a very different g⁽¹⁾ function
- consequence: very different momentum distribution

Bosons in the Tonks-Girardeau regime behave like fermions...

...but Bose statistics still present: very different momentum distribution

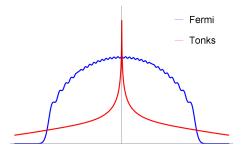
Fermi: $\sum |\phi_n(p)|^2$ h.o. eigenfunctions

Tonks:

large
$$p: n(p) \propto \frac{1}{p^4}$$

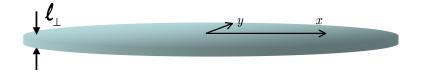
small $p: n(p) \propto \frac{1}{\sqrt{p}}$

see also: Paredes et al. (2004)



2D Bose gas

2D interacting Bose gas



Hélène Perrin Low-dimensional Bose gases | Part 2

Reminder: BEC or not BEC?

Reminder for a non interacting gas:

• uniform gas:
$$\varepsilon = \frac{\hbar^2 k^2}{2M}$$
 $\mathbf{k} = \frac{2\pi}{L}(n_x, n_y)$ $n(\varepsilon) = \frac{1}{\exp(\beta(\varepsilon - \mu)) - 1}$

3

Reminder: BEC or not BEC?

Reminder for a non interacting gas:

• uniform gas:
$$\varepsilon = \frac{\hbar^2 k^2}{2M}$$
 $\mathbf{k} = \frac{2\pi}{L}(n_x, n_y)$ $n(\varepsilon) = \frac{1}{\exp(\beta(\varepsilon - \mu)) - 1}$

$$n\lambda^2 = -\ln\left(1 - e^{\beta\mu}\right)$$

▶ ∢ ≣ ▶

- ∢ ≣ ▶

э

Reminder: BEC or not BEC?

Reminder for a non interacting gas:

• uniform gas:
$$\varepsilon = \frac{\hbar^2 k^2}{2M}$$
 $\mathbf{k} = \frac{2\pi}{L}(n_x, n_y)$ $n(\varepsilon) = \frac{1}{\exp(\beta(\varepsilon - \mu)) - 1}$

$$n\lambda^2 = -\ln\left(1 - e^{\beta\mu}\right)$$

For each
$$T > 0$$
, $\mu = k_B T \ln \left(1 - e^{-n\lambda^2}\right) < 0$ no BEC $\mu = 0$ only at $T = 0$.

3

Reminder: BEC or not BEC?

Reminder for a non interacting gas:

• uniform gas:
$$\varepsilon = \frac{\hbar^2 k^2}{2M}$$
 $\mathbf{k} = \frac{2\pi}{L}(n_x, n_y)$ $n(\varepsilon) = \frac{1}{\exp(\beta(\varepsilon - \mu)) - 1}$

$$n\lambda^2 = -\ln\left(1 - e^{\beta\mu}\right)$$

For each
$$T > 0$$
, $\mu = k_B T \ln \left(1 - e^{-n\lambda^2}\right) < 0$ no BEC $\mu = 0$ only at $T = 0$.

• trapped gas (harmonic trap): $N_C = \frac{\pi^2}{6} \left(\frac{k_B T}{\hbar \omega}\right)^2$ BEC local density: like the uniform system, where μ is replaced by a local chemical potential $\mu - V(\mathbf{r})$. $n(\mathbf{r})\lambda^2 = -\ln\left(1 - e^{\beta(\mu - V(\mathbf{r}))}\right)$ Below T_C , $\mu = 0$.

Reminder: BEC or not BEC?

Reminder for a non interacting gas:

• uniform gas:
$$\varepsilon = \frac{\hbar^2 k^2}{2M}$$
 $\mathbf{k} = \frac{2\pi}{L}(n_x, n_y)$ $n(\varepsilon) = \frac{1}{\exp(\beta(\varepsilon - \mu)) - 1}$

$$n\lambda^2 = -\ln\left(1-e^{\beta\mu}
ight)$$

For each
$$T > 0$$
, $\mu = k_B T \ln \left(1 - e^{-n\lambda^2}\right) < 0$ no BEC $\mu = 0$ only at $T = 0$.

• trapped gas (harmonic trap): $N_C = \frac{\pi^2}{6} \left(\frac{k_B T}{\hbar \omega}\right)^2$ BEC local density: like the uniform system, where μ is replaced by a local chemical potential $\mu - V(\mathbf{r})$. $n(\mathbf{r})\lambda^2 = -\ln\left(1 - e^{\beta(\mu - V(\mathbf{r}))}\right)$ Below T_C , $\mu = 0$. But: at the centre $\mu = V(\mathbf{0}) = 0 \Longrightarrow n(\mathbf{0}) = \infty$ What will happen with interactions limiting the density?

▶ < Ξ > ...

interacting 2D gas: • if $a > \ell_{\perp}$, $g_{2D} = \frac{4\pi\hbar^2}{M} \frac{1}{\ln(1/na_{2D}^2)}$ (strictly 2D)

• = • • = •

interacting 2D gas: • if $a > \ell_{\perp}$, $g_{2D} = \frac{4\pi\hbar^2}{M} \frac{1}{\ln(1/na_{2D}^2)}$ (strictly 2D) • if $a \ll \ell_{\perp}$, $g_{2D} = g_2 = \frac{\hbar^2}{M} \tilde{g}_2 = \frac{\hbar^2}{M} \frac{\sqrt{8\pi}a}{\ell_{\perp}}$

interacting 2D gas:

• if
$$a > \ell_{\perp}$$
, $g_{2D} = \frac{4\pi\hbar^2}{M} \frac{1}{\ln(1/na_{2D}^2)}$ (strictly 2D)
• if $a \ll \ell_{\perp}$, $g_{2D} = g_2 = \frac{\hbar^2}{M} \tilde{g}_2 = \frac{\hbar^2}{M} \frac{\sqrt{8\pi}a}{\ell_{\perp}}$

• in this regime, $\mu = ng_2$

interacting 2D gas:

• if
$$a > \ell_{\perp}$$
, $g_{2D} = \frac{4\pi\hbar^2}{M} \frac{1}{\ln(1/na_{2D}^2)}$ (strictly 2D)
• if $a \ll \ell_{\perp}$, $g_{2D} = g_2 = \frac{\hbar^2}{M} \tilde{g}_2 = \frac{\hbar^2}{M} \frac{\sqrt{8\pi a}}{\ell_{\perp}}$

• in this regime,
$$\mu = ng_2$$

• weak interactions for small \tilde{g}_2

interacting 2D gas:

• if
$$a > \ell_{\perp}$$
, $g_{2D} = \frac{4\pi\hbar^2}{M} \frac{1}{\ln(1/na_{2D}^2)}$ (strictly 2D)
• if $a \ll \ell_{\perp}$, $g_{2D} = g_2 = \frac{\hbar^2}{M} \tilde{g}_2 = \frac{\hbar^2}{M} \frac{\sqrt{8\pi a}}{\ell_{\perp}}$

- in this regime, $\mu = ng_2$
- weak interactions for small \tilde{g}_2

Typical value in the experiments: $\tilde{g}_2 = 0.13$ (ENS) to 0.02 (NIST) with $a \ll \ell_{\perp} \Longrightarrow$ weak interactions

The uniform interacting 2D gas

Phase coherence / long range order: $g^{(1)}(\mathbf{r}) \rightarrow g^{(1)}(\infty) \neq 0$?

∃ ► < ∃ ►</p>

э

The uniform interacting 2D gas

Phase coherence / long range order: $g^{(1)}(\mathbf{r}) \rightarrow g^{(1)}(\infty) \neq 0$?

- *T* = 0 Yes!
 - ideal gas: $\mu = 0$, all in ground state \Rightarrow long range order
 - interacting gas: OK if weak interactions, *i.e.* gas parameter $\frac{1}{\ln(1/na_{2D}^2)} \ll 1$ (Schick 1971)

伺 と く ヨ と く ヨ と

The uniform interacting 2D gas

Phase coherence / long range order: $g^{(1)}(\mathbf{r}) \rightarrow g^{(1)}(\infty) \neq 0$?

- *T* = 0 Yes!
 - ideal gas: $\mu=$ 0, all in ground state \Rightarrow long range order
 - interacting gas: OK if weak interactions, *i.e.* gas parameter $\frac{1}{\ln(1/na_{2D}^2)} \ll 1$ (Schick 1971)
- T > 0 No!

thermal fluctuations (phonons) destroy phase coherence (Hohenberg, Mermin, Wagner, 1966/1967)

- ideal gas: $g^{(1)}(r) \propto e^{-r/\ell}$ exponential decay

- interacting gas: phase fluctuations diverge logarithmically at infinity $\langle \delta \hat{\phi}^2 \rangle \sim \frac{2}{n_0 \lambda^2} \ln(r/\xi) \qquad \xi$: healing length

$$\Longrightarrow g^{(1)}(r) \sim \left(rac{\xi}{r}
ight)^{rac{1}{p_0\lambda^2}}$$
 algebraic decay

- 4 同 6 4 日 6 4 日 6 - 日

Above a critical temperature $T_C \sim T_d/10$, $g^{(1)}$ decays exponentially. Below T_C , $g^{(1)}$ decays algebraically. A fraction of the gas is superfluid, with a jump in superfluid density n_s between 0 and $n_S \lambda^2 = 4$

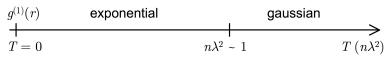
Above a critical temperature $T_C \sim T_d/10$, $g^{(1)}$ decays exponentially. Below T_C , $g^{(1)}$ decays algebraically. A fraction of the gas is superfluid, with a jump in superfluid density n_s between 0 and $n_S \lambda^2 = 4$ Summary:

ideal gas

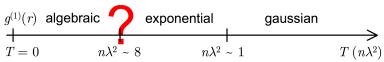
$g^{(1)}(r)$	exponential		gaussian	
T = 0		$n\lambda^2 \sim 1$		$\xrightarrow{T(n\lambda^2)}$

Above a critical temperature $T_C \sim T_d/10$, $g^{(1)}$ decays exponentially. Below T_C , $g^{(1)}$ decays algebraically. A fraction of the gas is superfluid, with a jump in superfluid density n_s between 0 and $n_S \lambda^2 = 4$ Summary:

ideal gas



interacting gas



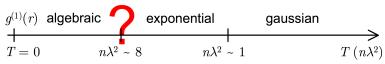
- **→** → **→**

Above a critical temperature $T_C \sim T_d/10$, $g^{(1)}$ decays exponentially. Below T_C , $g^{(1)}$ decays algebraically. A fraction of the gas is superfluid, with a jump in superfluid density n_s between 0 and $n_S \lambda^2 = 4$ Summary:

ideal gas

$g^{(1)}(r)$	exponential		gaussian	
+				\longrightarrow
T = 0		$n\lambda^2 \sim 1$		$T\left(n\lambda^{2} ight)$

interacting gas

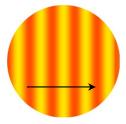


What is the nature of the transition?

No BEC, but quasi-condensate with fluctuating phase and negligible density fluctuations.

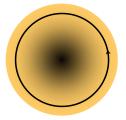
No BEC, but quasi-condensate with fluctuating phase and negligible density fluctuations.

• phonon-type excitations (smooth phase/density variations)



No BEC, but quasi-condensate with fluctuating phase and negligible density fluctuations.

- phonon-type excitations (smooth phase/density variations)
- quantized vortices

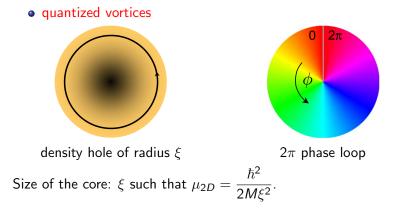


density hole of radius ξ

 2π phase loop

No BEC, but quasi-condensate with fluctuating phase and negligible density fluctuations.

• phonon-type excitations (smooth phase/density variations)

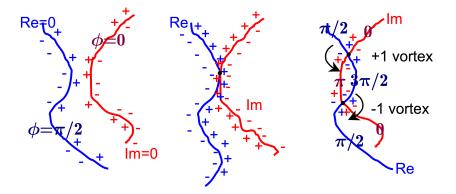


Vortex nucleation

 $\psi = \sqrt{n}e^{i\phi} \simeq \sqrt{n_0}e^{i\phi}$ fluctuates randomly. Continuity of $\psi \Rightarrow$ continuity of Re ψ and Im ψ \Rightarrow lines of Re $\psi = 0$ and Im $\psi = 0$, which fluctuate.

Vortex nucleation

 $\psi = \sqrt{n}e^{i\phi} \simeq \sqrt{n_0}e^{i\phi}$ fluctuates randomly. Continuity of $\psi \Rightarrow$ continuity of Re ψ and Im ψ \Rightarrow lines of Re $\psi = 0$ and Im $\psi = 0$, which fluctuate.

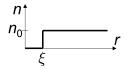


When two lines cross, 2 vortices of opposite charge are created.

• Single vortex at the centre of a circular condensate of size R



• Model for the condensate density: step function of range ξ



- velocity field: $\mathbf{v} = \frac{\hbar}{M} \nabla \phi$
- Circulation of the velocity: $\oint \mathbf{v} \cdot d\mathbf{r} = q \, 2\pi \frac{\hbar}{M}, \quad q \in \mathbb{Z}$
- Velocity field for a vortex of charge q: $\mathbf{v} = q \frac{\hbar}{Mr} \mathbf{u}_{\phi}$

Energy of a vortex

• Kinetic energy: $E_{\mathcal{K}} = \int \frac{1}{2} M v^2(\mathbf{r}) n(\mathbf{r}) d\mathbf{r}$

$$E_{K} = \frac{1}{2} M n_{0} \int_{\xi}^{R} 2\pi r \, dr \, q^{2} \frac{\hbar^{2}}{M^{2} r^{2}} = q^{2} \frac{\hbar^{2} n_{0} \pi}{M} \ln \frac{R}{\xi}$$
$$E_{K} = \frac{q^{2} n_{0} \lambda^{2} \frac{k_{B} T}{2} \ln \frac{R}{\xi}}{2}$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

æ

Energy of a vortex

• Kinetic energy: $E_{\mathcal{K}} = \int \frac{1}{2} M v^2(\mathbf{r}) n(\mathbf{r}) d\mathbf{r}$

$$E_{K} = \frac{1}{2} M n_{0} \int_{\xi}^{R} 2\pi r \, dr \, q^{2} \frac{\hbar^{2}}{M^{2} r^{2}} = q^{2} \frac{\hbar^{2} n_{0} \pi}{M} \ln \frac{R}{\xi}$$
$$E_{K} = q^{2} n_{0} \lambda^{2} \frac{k_{B} T}{2} \ln \frac{R}{\xi}$$

• Two vortices of charge q_1 and q_2 :

$$E = E_{\mathcal{K}} + E_{\mathcal{I}} = n_0 \lambda^2 \left[(q_1 + q_2)^2 \ln \left(\frac{R}{\xi}\right) - 2q_1 q_2 \ln \left(\frac{r_{12}}{\xi}\right) \right] \frac{k_B T}{2}$$

r₁₂

 q_2

Interactions: repulsion between vortices of same charge, attraction between vortices of opposite charge.

Energy of a vortex

• Kinetic energy: $E_{\mathcal{K}} = \int \frac{1}{2} M v^2(\mathbf{r}) n(\mathbf{r}) d\mathbf{r}$

$$E_{K} = \frac{1}{2} M n_{0} \int_{\xi}^{R} 2\pi r \, dr \, q^{2} \frac{\hbar^{2}}{M^{2} r^{2}} = q^{2} \frac{\hbar^{2} n_{0} \pi}{M} \ln \frac{R}{\xi}$$
$$E_{K} = q^{2} n_{0} \lambda^{2} \frac{k_{B} T}{2} \ln \frac{R}{\xi}$$

• Two vortices of charge q_1 and q_2 :

$$E = E_{K} + E_{I} = n_{0}\lambda^{2} \left[(q_{1} + q_{2})^{2} \ln\left(\frac{R}{\xi}\right) - 2q_{1}q_{2} \ln\left(\frac{r_{12}}{\xi}\right) \right] \frac{k_{B}T}{2}$$

r₁₂

Interactions: repulsion between vortices of same charge, attraction between vortices of opposite charge.

 \bullet Several vortices of charge ± 1 more stable than multiply charged vortex.

Berezinskii-Kosterlitz-Thouless transition by simple energetic arguments:

- Free energy F = E TS:
 - F > 0, low probability of vortex formation;
 - F < 0 gain in entropy, a vortex is likely to appear.

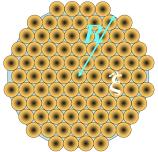
Berezinskii-Kosterlitz-Thouless transition by simple energetic arguments:

• Free energy F = E - TS:

F > 0, low probability of vortex formation;

F < 0 gain in entropy, a vortex is likely to appear.

• Entropy $S = k_B \ln(W)$ W: nb of available states



$$W = \frac{\pi R^2}{\pi \xi^2} \Longrightarrow S = 2k_B \ln \frac{R}{\xi}$$

or
$$TS = 4 \frac{k_B T}{2} \ln \frac{R}{\xi}$$

Berezinskii-Kosterlitz-Thouless transition by simple energetic arguments:

- Free energy F = E TS:
 F > 0, low probability of vortex formation;
 F < 0 gain in entropy, a vortex is likely to appear.
- Entropy $S = k_B \ln(W)$ W: nb of available states

$$W = \frac{\pi R^2}{\pi \xi^2} \Longrightarrow S = 2k_B \ln \frac{R}{\xi}$$
 or $TS = 4\frac{k_B T}{2} \ln \frac{R}{\xi}$

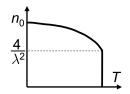
•
$$F = \frac{k_B T}{2} \left(q^2 n_0 \lambda^2 - 4\right) \ln \frac{R}{\xi}$$
; easiest case $q = \pm 1$:

$$F = \frac{k_B T}{2} \left(n_0 \lambda^2 - 4 \right) \ln \frac{R}{\xi}$$

Free energy
$$F = \frac{k_B T}{2} (n_0 \lambda^2 - 4) \ln \frac{R}{\xi}$$

•
$$n_0\lambda^2 > 4$$
 (low T): no free vortices

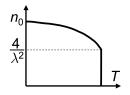
n₀λ² < 4 (high *T*): proliferation of free vortices; no superfluidity ⇒ n₀ = 0

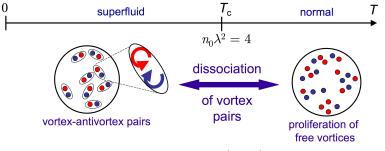


Free energy
$$F = \frac{k_B T}{2} (n_0 \lambda^2 - 4) \ln \frac{R}{\xi}$$

•
$$n_0\lambda^2 > 4$$
 (low T): no free vortices

• $n_0\lambda^2 < 4$ (high *T*): proliferation of free vortices; no superfluidity $\Rightarrow n_0 = 0$





Hadzibabic et al. (2006)

Critical temperature

At T_C , n_0 jumps from 0 to $n_0\lambda^2 = 4$. What is n_{tot} ? Prokof'ev et al. (2001):

at
$$T_C$$
: $n_{\text{tot}} = \ln \frac{C}{\tilde{g}_2}, \qquad C = 380$

글 > - < 글 >

Critical temperature

At T_C , n_0 jumps from 0 to $n_0\lambda^2 = 4$. What is n_{tot} ? Prokof'ev et al. (2001):

at
$$T_C$$
: $n_{\text{tot}} = \ln \frac{C}{\tilde{g}_2}, \qquad C = 380$

$$ilde{g}_2 = \sqrt{8\pi} rac{a}{\ell_\perp} = ...?$$
 $a = 2 - 5 \, \mathrm{nm}$ $\ell_\perp = 40 - 100 \, \mathrm{nm}$

 $\begin{array}{ll} \text{Paris experiment:} & \tilde{g}_2 = 0.13 & n_{\text{tot}}\lambda^2 = 8 \text{ at } T_C \\ \text{NIST experiment:} & \tilde{g}_2 = 0.02 & n_{\text{tot}}\lambda^2 = 10 \text{ at } T_C \end{array}$

Critical temperature

T = 0

At T_C , n_0 jumps from 0 to $n_0\lambda^2 = 4$. What is n_{tot} ? Prokof'ev et al. (2001):

 $n\lambda^2 \sim 8$

at
$$T_C$$
: $n_{tot} = \ln \frac{C}{\tilde{g}_2}$, $C = 380$
 $\tilde{g}_2 = \sqrt{8\pi} \frac{a}{\ell_\perp} = ...?$ $a = 2 - 5 \text{ nm}$ $\ell_\perp = 40 - 100 \text{ nm}$
Paris experiment: $\tilde{g}_2 = 0.13$ $n_{tot}\lambda^2 = 8 \text{ at } T_C$
NIST experiment: $\tilde{g}_2 = 0.02$ $n_{tot}\lambda^2 = 10 \text{ at } T_C$
 $g^{(1)}(r)$ algebraic **BKT** exponential gaussian

 $n\lambda^2 \sim 1$

 $T(n\lambda^2)$

Finite size effects

What does change in a trap? Condensate fraction in the superfluid phase?

$$\text{Recall: } g^{(1)}(r) \sim \left(\frac{\xi}{r}\right)^{\frac{1}{n_0\lambda^2}} \xrightarrow[r \to \infty]{} 0 \quad \text{ no long range order.}$$

< ∃ →

- ₹ 🖬 🕨

э

Finite size effects

What does change in a trap? Condensate fraction in the superfluid phase?

Recall: $g^{(1)}(r) \sim \left(\frac{\xi}{r}\right)^{\frac{1}{n_0\lambda^2}} \xrightarrow[r \to \infty]{} 0$ no long range order.

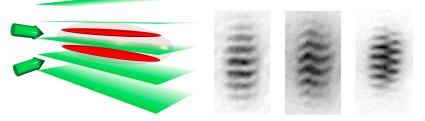
finite system L, $n_0 \lambda^2 > 4$, $g^{(1)} \gtrsim \left(\frac{\xi}{L}\right)^{\frac{1}{4}}$ $\xi \sim 0.1 \,\mu\text{m}, L \sim 100 \,\mu\text{m} \Rightarrow g^{(1)}(L) \sim 0.2$ not so small!

- Large condensate fraction f₀
- Large contrast in interference experiments

Achtung! $f_0 \neq \frac{n_0}{n}$ $\begin{cases} f_0 : \text{occupation of the most populated single particle level} \\ n_0 : \text{superfluid density} \end{cases}$ 1D Bose gas 2D Bose gas Uniform BKT Trapped gas

Experimental evidence for BKT in a 2D gas

ENS experiment: measure $g^{(1)}$ decay by interferometry



• measurement of the integrated contrast:

$$\frac{1}{L}\int_{-L}^{L}|g^{(1)}(x)|^2\,dx\propto\frac{1}{L^{2\alpha}}$$

exponential decay: $\alpha = \frac{1}{2}$ / algebraic decay: $\alpha = \frac{1}{4}$

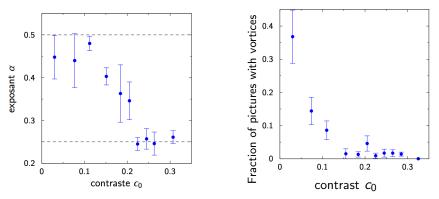
• statistics on phase defects (free vortices)

1D Bose gas 2D Bose gas

Uniform BKT Trapped gas

Experimental evidence for BKT in a 2D gas

Results: Hadzibabic et al., 2006



- contrast c_0 is a measure of temperature
- BKT transition evidenced by a step in exponent α and apparition of vortices

Experimental results:

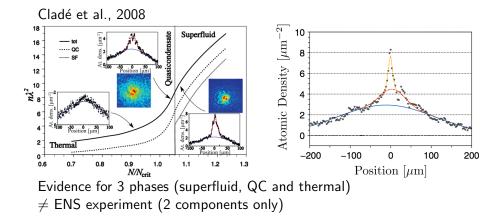
• BKT identified via 1-body correlation

Experimental results:

- BKT identified via 1-body correlation
- Density profile: 2 phases identified (3 phases at NIST)

Uniform BKT Trapped gas

Density profiles at NIST



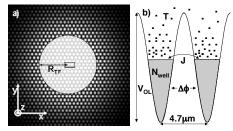
Experimental results:

- BKT identified via 1-body correlation
- Density profile: 2 phases identified (3 phases at NIST)
- BKT-like transition observed on a 2D lattice of BECs at JILA simulating an array of Josephson junctions

Experimental results:

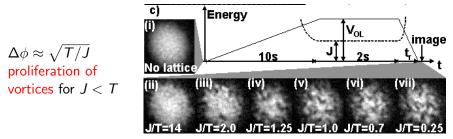
- BKT identified via 1-body correlation
- Density profile: 2 phases identified (3 phases at NIST)
- BKT-like transition observed on a 2D lattice of BECs at JILA simulating an array of Josephson junctions

2D lattice of period 5 μ m temperature T tunnel coupling J thermal phase fluctuations $\Delta \phi \approx \sqrt{T/J}$



Experimental results:

• BKT-like transition observed on a 2D lattice of BECs at JILA simulating an array of Josephson junctions



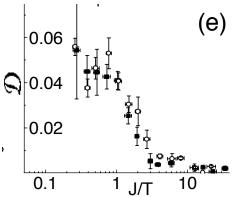
slowly remove the lattice to reconnect the phase before imaging

Experimental results:

• BKT-like transition observed on a 2D lattice of BECs at JILA simulating an array of Josephson junctions

density of vortices \mathcal{D} : results at two temperatures (35 nK and 60 nK) collapse on a single curve $\mathcal{D}\left(\frac{J}{T}\right)$

Schweikhard et al., 2007



Experimental results:

- BKT identified via 1-body correlation
- Density profile: 2 phases identified (3 phases at NIST)
- BKT-like transition observed on a 2D lattice of BECs at JILA (simulating an array of Josephson junctions)

Experimental results:

- BKT identified via 1-body correlation
- Density profile: 2 phases identified (3 phases at NIST)
- BKT-like transition observed on a 2D lattice of BECs at JILA (simulating an array of Josephson junctions)

incomplete to do list:

- clarify the nature of the phases
- observe the vortex binding/unbinding
- frequency shift predicted for the 2ω Pitaevskii mode
- confinement induced scattering resonance
- FQHE in a rotating 2D gas
- ...