Dissipative cooling of spin chains by a bath of dipolar particles M. Robert-de-Saint-Vincent, P. Pedri, B. Laburthe-Tolra

Laboratoire de Physique des Lasers, CNRS, Université Paris 13, Sorbonne Paris Cité

Website: http://www-lpl.univ-paris13.fr/gqd/

Spinors quantum gases to explore magnetism

Cold atoms in optical lattices

Much effort into the Heisenberg hamiltonian and t-J model

 $H = -J \sum_{\langle i, i \rangle} \vec{S}_i \cdot \vec{S}_j$

Hulet, Greiner, Bloch, Zwierlein, Kohl, Esslinger...

Tunable geometries, large spin systems, diversity in interaction properties (spin-dependence of contact, short- or long-range)

Magnetic Quantum gases group at LPL :

Strongly dipolar Chromium gases

S. Lepoutre, L. Gabardos, E. Maréchal, O. Gorceix, B. Laburthe-Tolra, L. Vernac

SU(N ≤ 10) symmetric Strontium gases

(new) I. Manai, E. Maréchal, O. Gorceix, B. Laburthe-Tolra, M. Robert-de-Saint-Vincent

Cooling spins on a lattice

Problem

Adiabatic loading of spins in an optical lattice : transport inhibited \rightarrow spin ordering by reorganisation does not follow easily

State of the art approach: inhomogeneous system for equilibration to *locally* low entropy. (Mathy 2012, Hart 2015, Mazurenko 2017)

Concept

Ability to flip a spin if it reduces the interaction energy; dissipation of this energy into a bath.

Many present proposals use light as a bath (e.g. Diehl 2010, Kaczmarczyk 2016)

Present proposition :

Two spins in a bath

Theory of large spin quantum gases K. Kechadi, P. Pedri

This year for ⁸⁷Sr : narrow-line laser cooling and degeneracy

Via dipole-dipole interactions, a polarised, strongly dipolar BEC thermalizes with the spin degrees of freedom of fermions in a lattice

Dipolar interactions with an atomic bath

Tool : Dipolar relaxation

Application example

Spontaneous depolarization of a Cr BEC

Effective interaction between spin F fermions and spin S polarised bosons

Phonon radiation diagram between two collective spin states |i>, |f> based on the Fermi golden rule and on the dispersion relation of dipolar BEC excitations

Strong impact of the bath lattice potential

Dispersion relation Spatial modes of the bath excitations Stabilisation of the bath dipolar instability

 \rightarrow optimum situation for anisotropic bath lattice with a very different radiation diagram

Collective emission of phonons, affected by propagation phases

Straightforward extension to spin chains with N>2 atoms, and finite BEC temperature - compute dipolar coupling between exact spin chain eigenstates

Simulation of dynamics

Outlook

Anisotropic cooling of spin excitations

Fixed magnetization evolutions (m_{tot} = cte)

Use gaps in the bath dispersion relations : g₋.B in band gap \rightarrow reduced sensitivity to external magnetic field \rightarrow no need for quadratic shift engineering

Drawback : Slower evolution (less processes available)

Other mixtures of interest Erbium bath for its low-field Feshbach resonances Applications to spins with stronger dipoles (e.g., Cr instead of K)

Solutions when spins have no magnetic dipole

Pumping procedures (e.g. Kaczmarczyk 2016) related to dissipative preparation of entangled states

References

- M. Cazalilla, A. Ho, and T. Giamarchi, New J. Phys. 8, 158 (2006)

- S. Diehl et. al., Phys. Rev. Lett. **105**, 227001 (2010)
- F. Gerbier et. al., Phys. Rev. A. **73**, 041602 (2006)
- Hart et. al., Nature **519**, 211 (2015)
- J. Kaczmarczyk, H. Weimer, and M. Lemeshko, New J. Phys. **18**, 093042 (2016)
- Mazurenko et al., Nature **545**, 462 (2017)
- Mathy et. al., Phys. Rev. A 86, 023606 (2012).
- B. Pasquiou et. al., Phys. Rev. A 81, 042716 (2010)
- B. Pasquiou et. al., Phys. Rev. Lett. **106**, 255303 (2011)
- A. Vogler et. al., Phys. Rev. Lett. **113**, 215301 (2014)

