Negative Absolute Temperature for Motional Degrees of Freedom

Simon Braun, Jens Philipp Ronzheimer, Michael Schreiber, Sean Hodgman, Tim Rom, Daniel Garbe, Ulrich Schneider, and Immanuel Bloch

Ludwig-Maximilians-Universität, Schellingstr. 4, 80799 München, Germany
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

Experimental Realization

Vacuum chamber

- MOT chamber and coils
- 85-84 dispersive & magnetic transport
- Blue-detuned light to prevent Maricamp losses in center
- Temporal amplifier with 100 at 768 ns
- Cloud centered on symmetry axis, coils also usable for feedback field

Optically plugged quadrupole trap

- Blue-detuned light to prevent Maricamp losses in center
- Temporal amplifier with 100 at 768 ns
- Cloud centered on symmetry axis, coils also usable for feedback field

Crossed optical dipole trap and blue-detuned lattice

- Blue-detuned light to prevent Maricamp losses in center
- Temporal amplifier with 100 at 768 ns
- Cloud centered on symmetry axis, coils also usable for feedback field

BEC with Tunable Interactions

- Two-state in absolute ground state
- 3D-87F3 Feshbach resonance
- 87Rb Feshbach resonance

Feshbach Induced Mott Insulator

- Mott Insulating
- Phase diagram for repulsive BEHM at $T = T_c$ (overestimate)
- Phase diagram for attractive BEHM at $T = T_c$ with shifted g

Creation of Negative Temperature States in Optical Lattices

What is negative absolute temperature?

- $P_i = \sum_{\ell} a_{\ell}^{\dagger} a_{\ell}$
- $\sum_{\ell} a_{\ell}^{\dagger} a_{\ell} = c a_0^2$

Energy bounds of the Bose-Hubbard Hamiltonian

- $H = -J \sum_{\ell} \left[a_{\ell}^{\dagger} a_{\ell+1} + a_{\ell+1}^{\dagger} a_{\ell} + \frac{1}{2} \right] + U \sum_{\ell} n_{\ell}$

Scheme for creation of negative temperature states

- Quench of interaction U and external confinement V of a bosonic Mott insulator

Phase diagram and negative pressure

- Density matrix: $\rho = \sum_{\ell} a_{\ell}^{\dagger} a_{\ell}$
- Energy differentials: $E_k - E_0 = \sum_{\ell} \left[a_{\ell}^{\dagger} a_{\ell} - \frac{1}{2} \right] + U \sum_{\ell} n_{\ell}$
- General stability conditions: $|F| / |P| \geq 8$

Stability

- Coherence lifetime vs. horizontal trap frequency
- Coherence lifetime vs. interaction

The Apparatus

Vacuum chamber

- MOT chamber and coils
- 85-84 dispersive & magnetic transport
- Blue-detuned light to prevent Maricamp losses in center
- Temporal amplifier with 100 at 768 ns
- Cloud centered on symmetry axis, coils also usable for feedback field

Optically plugged quadrupole trap

- Blue-detuned light to prevent Maricamp losses in center
- Temporal amplifier with 100 at 768 ns
- Cloud centered on symmetry axis, coils also usable for feedback field

Crossed optical dipole trap and blue-detuned lattice

- Blue-detuned light to prevent Maricamp losses in center
- Temporal amplifier with 100 at 768 ns
- Cloud centered on symmetry axis, coils also usable for feedback field

BEC with Tunable Interactions

- Two-state in absolute ground state
- 3D-87F3 Feshbach resonance
- 87Rb Feshbach resonance

Feshbach Induced Mott Insulator

- Mott Insulating
- Phase diagram for repulsive BEHM at $T = T_c$ (overestimate)
- Phase diagram for attractive BEHM at $T = T_c$ with shifted g

Creation of Negative Temperature States in Optical Lattices

What is negative absolute temperature?

- $P_i = \sum_{\ell} a_{\ell}^{\dagger} a_{\ell}$
- $\sum_{\ell} a_{\ell}^{\dagger} a_{\ell} = c a_0^2$

Energy bounds of the Bose-Hubbard Hamiltonian

- $H = -J \sum_{\ell} \left[a_{\ell}^{\dagger} a_{\ell+1} + a_{\ell+1}^{\dagger} a_{\ell} + \frac{1}{2} \right] + U \sum_{\ell} n_{\ell}$

Scheme for creation of negative temperature states

- Quench of interaction U and external confinement V of a bosonic Mott insulator

Phase diagram and negative pressure

- Density matrix: $\rho = \sum_{\ell} a_{\ell}^{\dagger} a_{\ell}$
- Energy differentials: $E_k - E_0 = \sum_{\ell} \left[a_{\ell}^{\dagger} a_{\ell} - \frac{1}{2} \right] + U \sum_{\ell} n_{\ell}$
- General stability conditions: $|F| / |P| \geq 8$

Stability

- Coherence lifetime vs. horizontal trap frequency
- Coherence lifetime vs. interaction